
M.Sc. Thesis
Master of Science in Engineering

Code-Based Post-QuantumCryptography
Hamming Quasi-Cyclic Encryption Scheme

Amalie Due Jensen (s160503)

Kongens Lyngby 2022

DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Matematiktorvet
Building 303B
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary
Public-key cryptography plays an important role in modern communication systems.
It is well known that the security of todays’ most used public-key encryption algo-
rithms such as RSA and ElGamal is vulnerable in the presence of quantum computers
due to e.g. Shor’s quantum algorithm from 1995. Therefore, NIST started a world-
wide competition-like standardization process of new public-key quantum-resistant
algorithms in 2017. Today, the 82 submissions have been reduced to 7 finalists and
8 alternates. The code-based cryptosystem, HQC, is among the 8 alternates and is a
quite new cryptosystem (published in 2017). Compared to the old Classic McEliece
from 1978 among the 7 finalists, the public key size of HQC is much smaller which is
a great advantage. HQC uses two codes, a publicly known code C and a random code,
and the security of HQC relies on the hardness of decoding the random code. Initially,
the code C was a product code of a shortened BCH code and a repetition code, but it
was later replaced by a concatenated code of a shortened Reed-Solomon code and a
duplicated Reed-Muller code. This thesis aims to investigate if an even better choice
of C exists. Four error-correcting codes have been implemented in SageMath, and
different concatenated codes, product codes, and a couple of single codes have been
designed using combinations of the chosen set of codes. Simulations have been run on
HPC cluster hardware to measure the performance of each designed code as C in HQC.
The best performing new code was a product code of an RM(r = 4, m = 9) code
and a repetition code of length n = 33. This code seems promising as a candidate for
HQC as it allows for reducing the public key size even more while keeping acceptable
security level estimates. Additionally, simulations have shown that if it is possible
for an attacker to compromise the system and force the parameter h representing the
parity-check matrix of the random code, to be either very close to 0 or very close
to n1n2, then the cryptosystem would be significantly easier to break with e.g. fault
attacks.

ii

Preface
This 32.5 ECTS points master thesis was prepared at the department of Applied
Mathematics and Computer Science at the Technical University of Denmark in fulfill-
ment of the requirements for acquiring a master’s degree in Mathematical Modelling
and Computing. The work was conducted under supervision of Assistant Professor
Tyge Tiessen and Ph.D. student Freja Elbro at the Technical University of Denmark
as well as Professor Dr.-Ing. Antonia Wachter-Zeh and Ph.D. student Sabine Pircher
at the Technical University of Munich.

Kongens Lyngby, January 17, 2022

Amalie Due Jensen (s160503)

iv

Acknowledgements
I would like to acknowledge the assistance of Tyge Tiessen and Freja Elbro who have
both been supportive and provided me with encouragement throughout the duration
of the project. Tyge has been helpful with administrative planning, and Freja’s help
with algebra has been extremely valuable.

I am really grateful to Antonia Wachter-Zeh and Sabine Pircher for a lot of support
from Munich. Already from day one, Antonia has been very open minded, and I
would like to express my deepest appreciation to Antonia for making it possible for
me to stay in Munich for 6 weeks during the process. The help from Sabine cannot
be overstimated. Sabine has played a decisive role throughout the whole process. She
gave me a lot of support and practical advice during my visit in Munich. Furthermore,
the collaboration regarding HQC with her has been really valuable and has also been
a lot of fun. Many thanks also to Violetta Weger and Georg Maringer and the rest
of Antonia’s group for giving me an amazing time in Munich.

I would like to thank Sven Puchinger for establishing the contact between me and
Antonia and for being helpful already 2 years ago when we got in touch.

I would like to thank the DTU DCC resources and Associate Professor Bernd Dammann
for making it possible to run simulations using HPC cluster hardware [DTU21].

Finally, I am extremely grateful to my boyfriend, family, and the friends at DTU who
have been supportive since we met in 2016. Thanks a lot!

vi

Contents
Summary i

Preface iii

Acknowledgements v

Contents vii

1 Introduction 1

2 Cryptography 3
2.1 Basic Encryption Models . 3
2.2 Post-Quantum Cryptography . 4
2.3 Public-Key Encryption Scheme (PKE) 5
2.4 PKE, KEM, and Signature Schemes 6

3 Coding Theory 7
3.1 Prerequisites . 7
3.2 Introduction to Coding Theory . 8
3.3 Linear Block Codes . 9
3.4 Reed-Solomon Codes . 15
3.5 BCH Codes . 20
3.6 Binary Repetition Codes . 22
3.7 Reed-Muller Codes . 23
3.8 Shortening . 28
3.9 Combining Codes . 30

4 The HQC Public-Key Encryption Scheme 37
4.1 Prerequisites . 37
4.2 The Public-key Encryption (PKE) Version 38
4.3 Correctness . 41
4.4 Security of HQC . 41
4.5 Known Attacks . 42
4.6 Advantages and Disadvantages . 44

viii Contents

5 Implementation 47
5.1 Implementation of Error-Correcting Codes 47
5.2 Implementation of Derived Codes . 51
5.3 Implementation of HQC . 52

6 A Better Choice of C? 55
6.1 A New Choice of C . 57
6.2 Code Design and Simulations . 58
6.3 Discussion . 76

7 Conclusion 79
7.1 Future Work . 80

Bibliography 81

CHAPTER1
Introduction

During the last decades, the need for quantum-resistant public-key encryption schemes
has been identified. The general idea in a public-key encryption scheme is to construct
a one-way function, i.e. encryption should be easy, but decryption without the secret
key should be hard. The most used approaches are to make the security of the encryp-
tion scheme rely on either the factoring problem or the discrete logarithm problem.
These two mathematical problems are both easy to set up (encryption is easy), but
hard to solve (decryption without secret key is NP-hard), and therefore they are suit-
able as one-way functions. Unfortunately, with the presence of quantum-computers,
these two mathematical problems are no longer NP-hard as polynomial-time quantum
algorithms that solve these mathematical problems have already been developed. An
example is Shor’s algorithm which is a polynomial-time quantum algorithm for the
factoring problem, developed by Peter Shor in 1995 [IBMb]. Given that the security
of our daily online transactions relies on the assumption that the factoring problem is
NP-hard, it is catastrophical if this assumption does not hold anymore, and therefore
quantum-resistant cryptography is needed.

Luckily, a lot of research within post-quantum cryptography, i.e. quantum-resistant
cryptography, is already being done around the world. Already in April 2015, the Na-
tional Institute of Standards and Technology (NIST) held a Post Quantum Workshop
to engage academic, industry, and government stakeholders to prioritize the research
within the field [NIS21]. In February 2016, a PQCrypto conference was held, also
by NIST, in Japan where NIST announced a call for public-key quantum-resistant
encryption schemes and that they would begin a worldwide competition-like stan-
dardization process of new public-key quantum-resistant encryption schemes. Differ-
ent classes of post-quantum encryption schemes are being considered. This includes
lattice-based, code-based, and hash-based encryption schemes, but the goal is com-
mon for all approaches: To find a difficult quantum-resistant mathematical problem
that the security of the encryption scheme can rely on. The timeline of the NIST
standardization process is shown below [20221]:

• November 2017: Submission deadline. NIST received 23 signature schemes and
59 KEM/encryption schemes totalling 82 schemes. The different scheme types
are explained in Chapter 2.

2 1 Introduction

• December 2017 - January 2019: The first round of the standardization process
was held. In the end, the 26 most promising schemes were selected to move on.

• January 2019 - July 2020: The second round of the standardization process was
held. In the end, 15 schemes were selected to move on.

• July 2020 - now: The third round is still being held. NIST has identified
7 finalists and 8 alternates, i.e. candidates for potential standardization after
further research.

As NIST announced that they do not expect to pick out one winner, but instead it
is preferrable to identify several good algorithms, it is still highly relevant to also
consider the alternates [20221]. One of the 8 alternates is a code-based encryption
scheme called the Hamming-Quasi Cyclic (HQC) encryption scheme, and this encryp-
tion scheme will be the focus of this thesis. Code-based encryption schemes are based
on error-correcting codes, and the NP-hard problem that the security relies on, partly
or completely, for such a scheme is decoding of a random code. HQC uses two codes,
a code denoted C and a random code. If the random code can be decoded, then HQC
is broken. Unlike most of the existing code-based encryption schemes such as Classic
McEliece from 1978 among the 7 finalists, the code C in HQC is public.

The concept of error-correcting codes is not a part of the field of cryptography, instead
it lies within the algebraic field. An error-correcting code consists of a set of codewords,
and when such a codeword is sent over a noisy channel, the receiver on the other side
receives an erronouos codeword. The task of the error-correcting code is then to
reconstruct the original codeword which is possible as long as not too many errors
occurred during the transmission. In the first version of HQC, the error-correcting
code C was a product code constructed using a shortened BCH code and a repetition
code. A product code is a way of deriving a new code by combining two existing codes.
In later versions, the product code was replaced by a concatenated code constructed
using a shortened Reed-Solomon code and a duplicated Reed-Muller code where a
concatenated code is another way of deriving a new code. It is still an open question
whether an even better choice of C for HQC can be found. A question which this
thesis aims to investigate. Note that a code C is a better choice for HQC if it allows
for reducing the public key size while still keeping the encryption scheme secure.

The goal of this thesis is to implement different error-correcting codes in the python
library SageMath. Furthermore, different product codes, concatenated codes, as well
as some single codes will be designed using combinations of the error-correcting codes
that are covered. Furthermore simulations on HPC cluster hardware of HQC with
different choices of C will be run to measure how each choice of C affects the security
of HQC. Finally, the simulation results will be compared and discussed, and it will be
discussed if any new insights in the encryption scheme has been identified throughout
the experiments.

CHAPTER2
Cryptography

In this Chapter, different concepts within the field of cryptography will be presented.
This includes the basic encryption models and the concept of post-quantum cryptog-
raphy.

2.1 Basic Encryption Models
In general, there are two types of encryption models, symmetric and asymmetric or
public-key encryption models. These are presented in the following sections.

2.1.1 Symmetric Encryption Model
In a symmetric encryption model, only one key is used. The encryption and decryp-
tion tasks are both performed with the same key which means that the key is shared
between the sender and the receiver as shown on Figure 2.1. An example of a symmet-
ric cryptosystem is the Advanced Encryption Standard (AES). Symmetric cryptogra-
phy can be attacked by quantum computers using Grover’s algorithm [IBMa]. How-
ever, it has been shown that resistance of symmetric cryptography can be achieved
by increasing the key sizes [WP21, p. 7].

Figure 2.1: Symmetric encryption model. The same key is used for both encryption
and decryption. The figure is borrowed from [Knu18b, p. 26].

4 2 Cryptography

2.1.2 Public-Key Encryption Model
In asymmetric or public-key encryption models, two keys are used, a public key for
encryption and a private key, also called a secret key, for decryption. The sender uses
the public key to encrypt, and only the person who has the secret key can decrypt as
shown in Figure 2.2.

Figure 2.2: Asymmetric encryption model. The green key used for encryption is
the public key, and the red key used for decryption is the secret key.
The figure is borrowed from [Knu18b, p. 46].

When building a public-key encryption model, the idea is to build a one-way function,
i.e. encryption should be easy, but decryption without the private key should be diffi-
cult. The two strategies that are mostly used today is to build public-key encryption
models that rely on one of the two hard problems [Knu18b, p. 45]:

• The factoring problem: Given n = pq, find the two primes p and q.

• The discrete logarithm problem: Given a, n, and b = ax mod n, find x.

The most famous example of a public-key encryption model that relies on the factoring
problem is RSA, and some famous examples of public-key encryption models that rely
on the discrete logarithm problem are ElGamal and elliptic-curve cryptography.

2.2 Post-Quantum Cryptography
It is well known that quantum computers will be able to break public-key cryptosys-
tems whose security relies on the factoring problem or the discrete logarithm problem,
and therefore the term post-quantum cryptography has been introduced to describe
public-key cryptosystems that will remain secure in the presence of quantum comput-
ers [Knu18a, p. 107].

2.3 Public-Key Encryption Scheme (PKE) 5

Shor’s quantum algorithm is a polynomial-time quantum algorithm that can solve
the factoring problem faster than classical factoring algorithms. It achieves this by
leveraging that quantum computers are able to determine a period in a given function
efficiently. A function f is called periodic with period t > 0 if it holds that

f(x + t) = f(x),

for all possible values of x. Knowing the period allows for finding small multiples of
ϕ(n) which makes it possible to factor n [Knu18a, p. 107]. As usual, ϕ(n) denotes
Euler’s phi function.

A variant of Shor’s algorithm can be used to break the discrete logarithm problem.

The basic requirements for post-quantum public-key encryption algorithms are [WP21,
p.9]:

• They should be based on NP-hard problems that are not breakable by polyno-
mial attacks on quantum computers.

• They should be efficiently implementable.

2.3 Public-Key Encryption Scheme (PKE)
Throughout the thesis, the focus will be on the public-key encryption model as this
is the one that is threatened by quantum computers. In this Section, the structure
of the public-key encryption model will be investigated.

In general, the public-key encryption model consists of three algorithms [Agu+21a,
p. 14]:

• Key generation: This algorithm takes as input the necessary parameters defining
the model and outputs a pair of keys, the public key pk that will be used for
encryption and the secret key sk that will be used for decryption.

• Encryption: This algorithm takes as input the message m and the public key pk
and outputs the ciphertext c.

• Decryption: This algorithm takes as input the ciphertext c and the secret key
sk and outputs the message m.

The general requirements to such a cryptosystem are both of the two following prop-
erties [Agu+21a, p. 14]:

6 2 Cryptography

• Correctness: The probability of retrieving the correct message m from decryp-
tion should be 1 or at least very close to 1 for any instance.

• Indistinguishability under Chosen Plaintext Attack (IND-CPA): An adversary
should not be able to efficiently guess which plaintext has been encrypted even
if he knows it is one of two different plaintexts of his own choice.

2.4 PKE, KEM, and Signature Schemes
As mentioned, NIST received in total 82 submissions to the standardization process of
which 23 submissions were signature schemes and the remaining 59 submissions were
Key Encapsulation Mechanism (KEM) schemes [20221]. Both types are techniques
within public-key cryptography, and the difference is explained in the following way:

• A signature scheme works in the following way [Knu18b, p. 95]: Alice creates
a key pair, a public key and a secret key. She publishes the public key and
keeps the secret key private. She can then use the secret key to sign a message,
i.e. she creates a signature. When Bob receives the message together with the
signature, he can then use Alice’s public key to verify that Alice created the
signature and that the signature belongs to the message.

• A KEM is an encryption technique where a public-key encryption scheme (PKE)
is used to exchange a symmetric key, e.g. an AES-key. In general, it is most
efficient to use the symmetric key for encryption and only use the PKE for
(symmetric) key exchange as symmetric encryption is much faster than public-
key encryption.

HQC belongs to the KEM category. The version of HQC that will presented in this
thesis is a PKE which is IND-CPA secure as described in Section 2.3. However, the
PKE version of HQC can be transformed to a KEM which is indistinguishable against
adaptive chosen-ciphertext attacks (IND-CCA2) which is the highest standard security
requirement for a public-key cryptosystem [Agu+21a, p. 15], but this transformation
will not be covered in this thesis.

CHAPTER3
Coding Theory

Among the category of post-quantum public-key cryptosystems are the code-based
cryptosystems. Code-based cryptosystems use error-correcting codes with the mathe-
matically NP-hard problem that the security relies on being the decoding of a random
code. In this chapter, the general concepts in coding theory and some different classes
of error-correcting codes will be introduced.

3.1 Prerequisites
It is assumed that the reader is already familiar with the definitions of groups, rings,
and prime fields. Throughout this thesis, let Fq denote the prime field of q elements
for a prime q, and let Fqm denote the extension field of the base field Fq where Fq

is a prime field, and the integer m ≥ 1 is called the extension degree [Rot06, p. 57].
Furthermore, let Fn

q denote a row vector of length n with elements from the prime field
Fq. Let Fq[x] denote the polynomial ring containing all polynomials in the variable x
with coefficients in the field Fq. Let Fq[X]/(f(x)) denote all polynomials over Fq of
degree less than the degree of f(x) as they are reduced modulo f(x), for a polynomial
f(x) ∈ Fq[x].

Furthermore, recall that a vector space over a field Fq is a set V together with two
operations, + and ·, that satisfies a list of axioms [Wac+, p. 36]. Furthermore, a
non-empty subset of vectors U ⊆ V is itself a vector space and is called subspace if
u, v ∈ U implies that

a · u + b · v ∈ U ,

for all a, b ∈ Fq.

A basis is a set of vectors that spans the whole vector space and is linearly independent.
The dimension of V is the number of vectors in the basis.

A term that the reader is not expected to know beforehand is a splitting field which
is defined in Definition 3.2. The Definition relies on the following Theorem 3.1 which
is stated without a proof. A proof can be found in [Rot06, p. 64].

8 3 Coding Theory

Theorem 3.1. [Rot06, p. 64] Let a(x) be a polynomial of degree n ≥ 0 over a
field Fq. Then there exists an extension field Fqm for some m in which a(x) has n
roots (counting multiplicity).

Definition 3.2 (Splitting Field). [Rot06, p. 65] Given a field Fq and a polynomial
a(x) ∈ Fq[x], an extension field Fqm that satisifies the conditions in Theorem 3.1 with
the smallest possible extension degree m is called a splitting field of a(x) over Fq.

Finally, the terms Hamming weight and Hamming distance will be introduced:

Definition 3.3 (Hamming Weight). [Rot06, p. 6] Let v = (v0, v1, . . . , vn−1) be a
vector. The Hamming weight of v, denoted wt(v), is defined as the number of non-
zero entries,

wt(v) := |{i | vi ̸= 0, i = 0, . . . , n− 1}|.

Definition 3.4 (Hamming Distance). [Rot06, p. 6] Let v and w be two vectors,
both of length n. The Hamming distance between v and w, denoted dH(v, w), is the
number of entries where they are different,

dH(v, w) := |{i | vi ̸= wi, i = 0, . . . , n− 1}|.

It follows that the Hamming distance between two vectors corresponds to the Ham-
ming weight of the difference of the vectors [Rot06, p. 6]:

dH(v, w) = wt(v−w).

3.2 Introduction to Coding Theory
Coding theory is a mathematical discipline where codes with specific properties and
structures are used for purposes such as communication and storage of information.
An important term in coding theory is an error-correcting code which is a set of
codewords. A codeword is a vector, also called a word, of some kind of symbols i.e.
bits of a given length. When such a codeword is transmitted over a noisy channel,
the receiver receives a codeword but in which some symbols have been changed due
to noise. The task of the error-correcting code is then to reconstruct the original
codeword. The transmission model is shown in Figure 3.1.

3.3 Linear Block Codes 9

Figure 3.1: The general transmission model borrowed from[Wac+, p. 5].

The different elements on Figure 3.1 are explained below [Wac+, p. 5-6]:

• The source is where the information vector u = (u0, . . . , uk−1) with elements
from a finite alphabet e.g. from Fq, is generated.

• The encoder maps the information vector u to a codeword c = (c0, . . . , cn−1)
from a code C, i.e.:

u ∈ Fk
q → c ∈ Fn

q , where c ∈ C.

• The codeword c is transmitted over a noisy channel where the received vector
r = c + e ∈ Fn

q where e is an error vector, is received.

• The decoder decodes the received vector, i.e. corrects the errors,

r ∈ Fn
q → ĉ ∈ Fn

q .

• Finally, the sink maps the codeword back to the information vector,

ĉ ∈ Fn
q → û ∈ Fk

q .

If everything was successful, then û = u.

3.3 Linear Block Codes
In this section, linear block codes and their properties are introduced. The term block
means that each codeword is independent of the previous and the next codewords
however, as this is often assumed these codes are simply called linear codes.

Definition 3.5 (Linear Block Code). [Wac+, p. 41] A linear block code C with
parameters [n, k, d]q is a k-dimensional linear subspace of the vector space Fn

q with
minimum Hamming distance d. Elements of C are called codewords.

10 3 Coding Theory

As indicated by Definition 3.5, a linear code is characterized by a set of parame-
ters [Wac+, p. 41]:

• n is the length which means the number of symbols in a codeword c, i.e. the
number of transmitted symbols.

• k is the dimension which means the number of symbols in an information vector
u.

• d is the minimum Hamming distance which means the minimum number of
differing symbols in any two codewords. I.e. let C be a linear code, then the
minimum distance d of C is defined as

d = min
a,b∈C, a ̸=b

{dH(a, b)}.

The minimum distance can be used to compute how many errors a code can
correct. In general, a linear code C can correct up to ⌊d−1

2 ⌋ errors.

• q is the number of available symbols i.e. the size of the alphabet.

Additionally, a linear code has the following properties:

• n − k is the redundancy, i.e. the number of elements that do not contain new
information but are necessary in order to be able to decode,

• qk is the number of codewords in the code,

• k
n is the rate of the code. In general, if the rate is big, then few additional
redundancy symbols are transmitted which is good for efficient transmission.

Lemma 3.6 (Minimum Distance of a Linear Code). [Wac+, p. 42] Let C be a linear
code, then the following holds for the minimum distance d of C:

d = min
c∈C, c ̸=0

{wt(c)},

Proof. The fact that C is linear means that for two codewords, a, b ∈ C, then a−b =
c ∈ C. If a and b are not the same codeword, then c ̸= 0. Therefore, it follows
that [Wac+, p. 42]

d = min
a,b∈C, a ̸=b

{wt(a − b)} = min
c∈C, c̸=0

{wt(c)}.

3.3 Linear Block Codes 11

A generator matrix which is defined in Definition 3.7 plays an important role in the
mapping from the information vector u to a codeword c, i.e. in the encoder in the
transmission model in Figure 3.1.

Definition 3.7 (Generator Matrix). [Wac+, p. 46] A k × n matrix G ∈ Fk×n
q is a

generator matrix of a linear [n, k, d]q code C if its rows are k linearly independent
vectors that form a basis of C.

An information vector u ∈ Fk
q is mapped to a codeword c ∈ Fn

q from a code C by
computing,

c = uG ∈ Fn
q , c ∈ C.

Another important matrix is the parity-check matrix, but in order to define the parity-
check matrix, the dual code should first be defined:

Definition 3.8 (Dual Code). [Wac+, p. 48] Let C be a linear [n, k, d]q code, then the
dual code of C is defined as

C⊥ := {c⊥ ∈ Fn
q | ⟨c, c⊥⟩ = 0, for all c ∈ C},

where ⟨c, c⊥⟩ =
∑n

i=1 cic
⊥
i is the scalar product.

Definition 3.9 (Parity-Check Matrix). [Agu+21a, p. 9] Let C be an [n, k, d]q code,
then an (n− k)× n matrix H ∈ F(n−k)×n

q that satisfies both

C = {c ∈ Fn
q | HcT = 0},

and

C⊥ = {uH | u ∈ Fn−k
q },

is called a parity-check matrix of C. Note that the latter criteria means that H is the
generator matrix of the dual code C⊥.

It follows from Definition 3.9 that the following also holds for a generator matrix G
and a parity-check matrix H [Wac+, p. 50]:

G ·HT = 0.

Using the parity-check matrix, the syndrome can be defined:

12 3 Coding Theory

Definition 3.10 (Syndrome). [Rot06, p. 34] Let C be a linear [n, k, d]q code, and let
H ∈ F(n−k)×n

q be a parity-check matrix of C. The syndrome s of a vector v ∈ Fn
q is

defined by

s = HvT .

It follows from Definition 3.9 that

v ∈ C ⇔ HvT = 0.

The syndrome plays an important role as the term decoding a random code corre-
sponds to solving an instance of the syndrome decoding problem which is the following
problem: Given a parity-check matrix H ∈ F(n−k)×n

q and a syndrome s ∈ Fn
q , find e

such that [EB21b, p. 1]

s = HeT .

Note that the syndrome of a received word r = c + e where c is the codeword and e
is the error vector as the same as the syndrome of e, since

HrT = H(c + e)T = HcT + HeT = 0 + HeT = HeT .

3.3.1 Linear Cyclic Codes
The set of error-correcting codes that will be covered in this thesis includes cyclic
codes. Therefore, (linear) cyclic codes are introduced in this Section.

Definition 3.11 (Cyclic Code). [MS77, p. 188-189] A code C is cyclic, if any cyclic
shift of a codeword of C is again a codeword of C, i.e.,

(c0, c1, . . . , cn−1) ∈ C ⇒ (cn−1, c0, . . . , cn−2) ∈ C.

Definition 3.11 implies that a codeword can be shifted any number of positions and
still be a codeword.

Now, associate the vector (c0, c1, . . . , cn−1) ∈ Fn
q with the polynomial c(x) := c0 +

c1x+c2x2+· · ·+cn−1xn−1 ∈ Fq[x]. A shift to the right of this polynomial corresponds
to multiplying c(x) with the variable x,

c(x) · x = c0x + c1x2 + c2x3 + · · ·+ cn−1xn.

3.3 Linear Block Codes 13

In order to achieve a cyclic shift and not just a right shift, the rightmost coefficient
should become the leftmost coefficient which can be done by computing,

c(x) · x + cn−1 − cn−1xn = c(x) · x− cn−1 · (xn − 1)
= c(x) · x mod (xn − 1).

This leads to the following fact: A linear code is cyclic if and only if [Wac+, p. 84],

c(x) ∈ C ⇒ c(x) · x mod (xn − 1) ∈ C,

and it can be shown that the following also holds for every a(x) ∈ Fq[x] [Wac+, p. 84]:

c(x) ∈ C ⇒ c(x) · a(x) mod (xn − 1) ∈ C. (3.1)

A cyclic code can be generated using a generator polynomial. Given a generator poly-
nomial, a generator matrix as we know from the previous section, can be constructed.

The following Theorem and Lemma are stated without proofs. Proofs can be found
in [Wac+, p. 85].

Theorem 3.12 (Generator Polynomial). [Wac+, p. 85] Let C be a cyclic [n, k, d]q
code. Then there is a unique monic polynomial g(x) such that for every c(x) ∈ Fq[x]
of degree n− 1, it holds that

c(x) ∈ C ⇔ g(x) | c(x).

The polynomial g(x) from the Theorem above is called the generator polynomial and
has degree n−k. It follows from the Theorem that given a generator polynomial g(x)
a cyclic code can be defined by

C = {u(x) · g(x) | u(x) ∈ Fq[x] and deg u(x) < k}. (3.2)

Lemma 3.13 (Generator Polynomial). [Wac+, p. 85] Let g(x) be the generator
polynomial of a cyclic [n, k, d]q code. Then

g(x) | (xn − 1).

Furthermore, it also holds the other way around: If g(x) is a polynomial in Fq[x] for
which it holds that g(x) | (xn − 1), then C from Equation (3.2) is a cyclic code.

Such a generator polynomial g(x) have some roots, and when we talk about the roots
of a cyclic code C, we mean the roots of its generator polynomial g(x) which is a subset
of the roots of xn − 1 as the generator polynomial is a factor of xn − 1 according to

14 3 Coding Theory

Lemma 3.13. The roots of xn−1 lie in the splitting field (see Definition 3.2) Fqm , and
in no smaller field [MS77, p. 196]. The length n is chosen such that gcd(n, q) = 1, and
then the dimension k is derived from n and the number of roots as we say that there
are n − k distinct roots. Given a list of roots, say α1, α2, . . . , αn−k, the generator
polynomial is constructed as

g(x) =
n−k∏
i=1

(x− αi). (3.3)

An element in Fqm is a root of g(x) if and only if all its conjugates with respect to
Fq also are [Rot06, p. 248]. The conjugates of an element in Fqm are all the elements
that belong to the same conjugacy class as itself. The term conjugacy class is defined
below.

Definition 3.14 (Conjugacy Class). [Rot06, p. 219] The conjugacy class with respect
to Fq of an element α ∈ Fqm is given by,

Cα = {α, αq, αq2
, . . . , αqi−1

},

where i is the smallest positive integer such that αqi = α.

The different conjugacy classes are either identical or distinct [Wac+, p. 32], and
therefore a way to cover all the roots is to take the union of all the conjugacy classes:

{α1, α2, . . . , αn−k} = Cα1 ∪ Cα2 ∪ · · · ∪ Cαn−k
,

A way to construct a generator polynomial as in Equation (3.3) from the union of
conjugacy classes is in the following way:

g(x) =
n−k∏
i=1

Mαi(x),

where Mαi
(x) is the minimal polynomial with respect to Fq of each element in Cαi

as defined in Definition 3.15.

Definition 3.15 (Minimal Polynomial). [Rot06, p. 219] Let α ∈ Fqm and let Cα

be the conjugacy class that contains α as defined in Definition 3.14. The minimal
polynomial of α with respect to Fq is defined by,

Mα(x) =
∏

γ∈Cα

(x− γ).

3.4 Reed-Solomon Codes 15

To summarize: Given a set of roots, a generator polynomial can be constructed. Given
a generator polynomial, a cyclic code can be generated.

Finally, writing g(x) = g0 + g1x + · · · + gn−kxn−k, it follows that the corresponding
generator matrix can be constructed as

GBCH =


g0 g1 · · · gn−k 0 0 0
0 g0 g1 · · · gn−k 0 0
...

...
0 0 · · · g0 g1 · · · gn−k

 ∈ Fk×n
q .

3.4 Reed-Solomon Codes
Reed-Solomon (RS) codes are a class of codes that is used a lot in practice since it
has some great advantages. First of all, RS codes meet the Singleton bound (see
Theorem 3.16) which means that they have the best, i.e. largest, possible minimum
distance for their length n and dimension k, d = n− k + 1.

Theorem 3.16 (Singleton Bound). [RB20, Chapter. 3, p. 17] For any [n, k, d]q linear
code, then it holds that

d ≤ n− k + 1.

Furthermore, RS codes can be efficiently encoded and decoded for up to ⌊d−1
2 ⌋ errors.

However, there is also the downside that their length n is bounded from above by the
field size, n ≤ q − 1.

3.4.1 Generalized Reed-Solomon Codes

Definition 3.17 (Generalized Reed-Solomon (GRS) Code). [Rot06, p. 148] Let
α1, α2, . . . , αn ∈ Fq be n distinct non-zero elements called code locators, and let
v1, v2, . . . , vn ∈ Fq be non-zero elements called column multipliers (not necessarily
distinct), where n ≤ q − 1. A Generalized Reed-Solomon code of length n and dimen-
sion k is defined by the following (n− k)× n parity-check matrix,

HGRS =


1 1 · · · 1

α1 α2 · · · αn

...
...

...
...

αn−k−1
1 αn−k−1

2 · · · αn−k−1
n




v1 0 · · · 0
0 v2 · · · 0
...

...
0 0 · · · vn

 ,

and is denoted RS(n, k).

16 3 Coding Theory

It follows that GRS codes have the following generator matrix. For a proof, see [Rot06,
p. 149]

Definition 3.18 (Generator Matrix of GRS codes). [Rot06, p. 149] Given anRS(n, k)
code defined by its parity-check matrix HGRS as in Definition 3.17. There exist non-
zero elements v′

1, v′
2, . . . , v′

n such that

GGRS =


1 1 · · · 1

α1 α2 · · · αn

...
...

...
...

αk−1
1 αk−1

2 · · · αk−1
n




v′
1 0 · · · 0
0 v′

2 · · · 0
...

...
0 0 · · · v′

n

 ,

is a generator matrix with GGRSHT
GRS = 0.

The GRS codes can also be defined by evaluating degree-restricted polynomials as:

Theorem 3.19 (GRS Codes defined as Polynomial Evaluation). [Rot06, p. 150]
Let α1, α2, . . . , αn ∈ Fq be n distinct non-zero elements called code locators, and let
v1, vn, . . . , vn ∈ Fq be non-zero elements called column multipliers (not necessarily
distinct), where n ≤ q − 1. Then, the code which is generated by the following set of
vectors,

{eval(u(x)) := (v′
1u(α0), v′

2u(α1), . . . , v′
nu(αn−1)) | u(x) ∈ Fq[x] and deg u(x) < k},

is an RS(n, k) Generalized Reed-Solomon code.

Let u = (u0, u1, . . . , uk−1) be an information vector that is encoded to the codeword
c = (c0, c1, . . . , cn−1) using the usual calculation:

c = uG ∈ Fn
q , c ∈ C. (3.4)

This calculation is related to Theorem 3.19 in the following way: Interpret the infor-
mation vector u as the polynomial,

u(x) = u0 + u1x + · · ·+ uk−1xk−1 ∈ Fq[x]<k,

and then the calculation in Equation (3.4) corresponds exactly to the evaluation in
Definition 3.19:

uG = (v′
1u(α0), v′

2u(α1), . . . , v′
nu(αn−1)).

3.4 Reed-Solomon Codes 17

3.4.2 Conventional Reed-Solomon Codes
The class of codes called BCH codes which will later be introduced is related to
conventional RS codes which will be introduced in this Section. Conventional RS
codes are a special case of GRS codes obtained as:

Definition 3.20 (Conventional Reed-Solomon Codes). [Rot06, p. 151] Let n be a
positive integer dividing q − 1 and let α be an element of multiplicative order n in
Fq. Furthermore, let b be an integer. A Conventional Reed-Solomon code over Fq is
a GRS code with code locators,

αj = αj−1, 0 ≤ j ≤ n− 1,

and column multipliers,

vj = vb(j−1), 0 ≤ j ≤ n− 1.

Lemma 3.21 (Parity-Check Matrix of Conventional RS Codes). [Rot06, p. 151] A
conventional RS code RS(n, k) has the following parity-check matrix,

HRS =


1 αb · · · α(n−1)b

1 αb+1 · · · α(n−1)(b+1)

...
...

...
...

1 αb+d−2 · · · α(n−1)(b+d−2)

 ,

where d− 1 = n− k.

Proof. The Lemma follows by plugging in the code locators and column multipliers
from Definition 3.20 in the parity-check matrix for GRS codes in Definition 3.17.

As usual, associate the vector (c0, c1, . . . , cn−1) ∈ Fn
q with the polynomial c(x) :=

c0 + c1x + c2x2 + · · · + cn−1xn−1 ∈ Fq[x]. As explained in Section 3.3, for every
codeword c, it holds that

c ∈ CRS ⇔ cHT
RS = 0.

From the calculation,

cHT
RS =


c0 + c1αb + · · ·+ cn−1α(n−1)b

c0 + c1αb+1 + · · ·+ cn−1α(n−1)(b+1)

...
c0 + c1αb+d−2 + · · ·+ cn−1α(n−1)(b+d−2),


T

,

18 3 Coding Theory

it follows that cHT
RS = 0 can only be achieved if c(αℓ) = 0 for ℓ = b, b+1, . . . , b+d−2.

Hence,

c ∈ CRS ⇔ c(αℓ) = 0, for ℓ = b, b + 1, . . . , b + d− 2. (3.5)

As mentioned, conventional RS codes are related to BCH codes, both of which are
cyclic codes. Therefore, conventional RS codes can be generated using a generator
polynomial as described in Section 3.3.1: The generator polynomial g(x) of CRS is
defined by plugging in the roots in Equation (3.5). Hence,

g(x) = (x− αb)(x− αb+1) · · · (x− αb+d−2).

It follows from Equation (3.5)

c ∈ CRS ⇔ g(x) | c(x).

This means that a conventional RS code can be generated by its generator polynomial
exactly as in Section 3.3.1.

3.4.3 Decoding Reed-Solomon Codes
There exists different decoders for Reed-Solomon codes, but in this project a decoder
called Interpolation-Based Unique Decoding is used. As the name says, the decoder
is interpolation-based, and it consists of the following two steps:

1. Interpolation of a bivariate polynomial: The goal of this step is to find a bi-
variate polynomial Q(x, y) = Q0(x) + Q1(x) · y satisfying some conditions (see
Theorem 3.22).

2. Factorization of the bivariate polynomial: The goal of this step is to use the
bivariate polynomial from the interpolation step to find the information vec-
tor/polynomial u(x) (see Theorem 3.23).

Theorem 3.22 (Interpolation Step). [RB20, Chapter 5, p. 24] Let (α1, α2, . . . , αn)
be the code locators of a GRS(n, k) code, and let τ = ⌊n−k

2 ⌋. Furthermore, let
r = (r1, r2, . . . , rn) = c + e be a received word with c = eval(u(x)) and wt(e) ≤ τ .
Then there exists a non-zero polynomial Q(x, y) = Q0(x) + y ·Q1(x) ∈ Fq[x, y] such
that

1. Q(αi, ri) = 0 for i = 1, . . . , n,

2. deg Q0 ≤ τ + k − 1,

3. deg Q1 ≤ τ .

3.4 Reed-Solomon Codes 19

Proof. Condition 1 simply means that it is a linear system with n equations. The
number of unknowns in this linear system of equations is the number of coefficients
of the polynomials Q0(x) and Q1(x). Since deg Q0 ≤ τ + k− 1, then Q0(x) has τ + k
coefficients, and since deg Q1 ≤ τ , then Q1(x) has τ + 1 coefficients. Hence, the total
number of coefficients, i.e. the total number of unknowns is,

(τ + k) + (τ + 1) = 2τ + k + 1

= 2 · ⌊n− k

2
⌋+ k + 1

≥ n− k − 1 + k + 1
= n.

From second to third step above, the following is used:

2 · ⌊n− k

2
⌋ =

{
n− k if n− k ≡ 0 mod 2
n− k − 2 · 1

2 = n− k − 1 if n− k ≡ 1 mod 2

Hence, since the number of unknowns is at least as big as the number of equations,
there exists always such a polynomial Q(x, y).

Theorem 3.23 (Factorization Step). [RB20, Chapter 5, p. 24] For any such Q(x, y)
as defined in Theorem 3.22, it holds that u(x) = −Q0(x)/Q1(x).

Proof. First of all, the bivariate polynomial Q(x, y) satisfies Q(αi, u(αi) + ei) = 0
which is condition 1 of Theorem 3.22. Since wt(e) ≤ τ , then ei = 0 for at least n− τ
positions, and hence the univariate polynomial Q(x, u(x)) = Q0(x) + Q1(x) ·u(x) has
at least n − τ roots, αi where u(αi) = ri. Since Q(x, u(x)) has at least n − τ roots,
then Q(x, u(x)) must also have degree at least n− τ . On the other hand,

deg Q(x, u(x)) ≤ max{deg Q0, deg Q1 + deg u(x)}
≤ max{τ + k − 1, τ + k − 1}
= τ + k − 1
< n− τ,

which is a contradiction, so in order to fulfill both constraints, it must be the case
that Q(x, u(x)) = 0. The conclusion is that Q0(x) + u(x)Q1(x) = 0 and u(x) =
−Q0(x)/Q1(x).

The algorithm is summarized in Algorithm 1 where αi and ri for i = 1, . . . , n have
been plugged in. For a proof of the correctness of the algorithm, see [RB20, p. 25].

20 3 Coding Theory

Algorithm 1 Interpolation-Based Unique Decoding [Wac+, p. 78]
1: Input: received word r = (r1, r2, . . . , rn)
2: Output: message word u
3: Interpolation step: solve the following linear system of equations:


1 α1 α2

1 · · · ατ+k−1
1 r1 r1 · α1 · · · r1 · ατ

1
1 α2 α2

2 · · · ατ+k−1
2 r2 r2 · α2 · · · r2 · ατ

2
...

...
...

...
...

1 αn α2
n · · · ατ+k−1

n rn rn · αn · · · rn · ατ
n

 ·



Q0,0
Q0,1

...
Q0,τ+k−1

Q1,0
Q1,1

...
Q1,τ


=

0
...
0

 .

4: set Q0(x) =
∑τ+k−1

i=0 Q0,ix
i and Q1(x) =

∑τ
i=0 Q1,ix

i

5: Factorization step: calculate u(x) = −Q0(x)
Q1(x)

6: return message word u

3.5 BCH Codes
The next class of codes that will be introduced was already mentioned in the context
of conventional RS codes and is called BCH codes. Recall that both conventional RS
codes and BCH codes are linear cyclic codes as described in Section 3.3.1, and BCH
codes are related to conventional RS codes in the sense that they are subfield subcodes
of RS codes. What this means will be explained later.

Let n be a positive integer chosen such that gcd(n, q) = 1. Let m be the smallest
possible positive integer such that n | qm−1. Furthermore, let α ∈ Fqm be an element
of multiplicative order n, and let b and δ be integers with 0 < δ ≤ n. The BCH code
CBCH over Fq is then defined as a linear cyclic [n, k]q (the minimum distance will
be derived later) code whose set of roots consists of the elements of the consecutive
sequence [Rot06, p. 162],

αb, αb+1, . . . , αb+δ−2, (3.6)

and their conjugates. In other words, CBCH consists of all the polynomials c(x) ∈

3.5 BCH Codes 21

Fq[x] of degree at most n where [Rot06, p. 162],

c(αi) = 0, for i = b, b + 1, . . . , b + δ − 2. (3.7)

This root sequence looks similar to the one for the conventional RS code. However, the
difference between the BCH code and the conventional RS code is that the BCH code
is over Fq while the conventional RS code is over the extension field Fqm . Therefore,
the set of roots of the BCH code consists of some conjugates that are not included in
the set of roots of the conventional RS code. Including the extra conjugates is a way
of converting from the extension field Fqm to the base field Fq.

Recall that the generator polynomial of the conventional RS code is defined as,

g(x) := (x− αb) · · · (x− αb+δ−2).

The conjugates are computed and included in the generator polynomial as described
in Section 3.3.1: Define a list of conjugacy classes such that

{αb, αb+1, . . . , αb+δ−2} = Cαb ∪ Cαb+1 ∪ · · · ∪ Cαb+δ−2 ,

where Cαi is a conjugacy class that contains the root αi of C. Then, define the
generator polynomial as

g(x) =
b+δ−2∏

i=b

Mαi(x),

where Mαi(x) is the minimal polynomial with respect to Fq of each element in Cαi

as defined in Definition 3.15. The dimension of the BCH code can be derived from:

deg g(x) = n− k. (3.8)

What remains is to derive the minimum distance of the BCH code: Even though it is
easy to determine the minimum distance of an RS code from the Singleton bound in
Theorem 3.16, it is not as easy to determine the minimum distance of a BCH code.
However, the following Theorem gives a lower bound on the minimum distance:

Theorem 3.24 (The BCH Bound). [Wac+, p. 91] Let CBCH be an [n, k, d]q BCH
code with generator polynomial g(x) where n divides qm − 1 and α ∈ Fqm is an
element of order n. Let b, b + 1, . . . , b + δ − 2 and their conjugates be the underlying
root sequence for some integers b and δ ≥ 2. Then d ≥ δ.

Proof. The polynomial,

g′(x) = (x− αb) · · · (x− αb+δ−2),

22 3 Coding Theory

clearly divides g(x) since b, b + 1, . . . , b + δ− 2 is a subset of all the roots of the BCH
code. Furthermore, the polynomial g′(x) is the generator polynomial of a conventional
RS code with parameters [n, n− δ + 1, δ]qm and code locators and column multipliers
as defined in Definition 3.20. Therefore, it follows that every codeword of CBCH is
also a codeword of the [n, n− δ + 1, δ]qm RS code, and hence CBCH is a subcode of
the [n, n− δ + 1, δ]qm RS code. This also means that the minimum distance of CBCH

is at least the one of the RS code since the codewords in CBCH with smallest distance
are also contained in the RS code. Hence, it is proved that d ≥ δ.

Finally, it will be shown that the BCH code is a subfield subcode of a conventional
RS code as earlier claimed:

Theorem 3.25 (BCH Codes as Subfield Subcodes). [Wac+, p. 91] A BCH code
with parameters [n, k, d ≥ δ]q and generator polynomial g(x) is a subfield subcode of
a conventional RS code with parameters [n, n− δ + 1, δ]qm .

Proof. In the proof of Theorem 3.24, it was shown that every codeword of CBCH is
also a codeword of RS[n, n− δ + 1, δ]qm , i.e.,

CBCH ⊆ (Fn
q ∩RS[n, n− δ + 1, δ]qm).

It can be shown that also ”⊇” holds, i.e. that any RS codeword with coefficients in
the base field Fq is also a codeword in CBCH . This is not proved here, but a proof
can be found in e.g. [Wac+, p. 91].

Since both ”⊆” and ”⊇” hold, it follows that

CBCH = (Fn
q ∩RS[n, n− δ + 1, δ]qm).

The conclusion is that all codewords of the RS code that lie in the subfield Fq are
also codewords of the BCH code which proves that BCH codes are subfield subcodes
of RS codes.

Since BCH codes are subfield subcodes of RS codes, then the BCH codes can be
decoded using the decoder for RS codes that was presented in Section 3.4.3.

3.6 Binary Repetition Codes
A binary repetition code is probably the most simple error-correcting code that exists.
As the name reveals, it simply repeats the information symbols several times.

3.7 Reed-Muller Codes 23

Definition 3.26 (Binary Repetition Code). [Wac+, p. 43] A binary repetition code
encodes an information vector of length 1, u = (u0) ∈ F2, into a codeword by repeating
it n times, c = (u0, . . . , u0) ∈ Fn

2 . In other words, the binary repetition code is
constructed by the following generator matrix,

G =
[
1 1 · · · 1

]
∈ F1×n

2 .

It follows by construction that a binary repetition code has length n, dimension k = 1,
and that it consists of only the two codewords,

C = {(00 . . . 0), (11 . . . 1)}.

This also means that the minimum distance is n. In total, a binary repetition code
has parameters [n, 1, n]2.

A binary repetition code decodes and corrects errors using majority decision: If a
codeword contains more 1’s than 0’s, then it is decoded to a 1, and if it contains more
0’s than 1’s, then it is decoded to a 0. It follows that a binary repetition code can
correct ⌊n−1

2 ⌋ errors.

3.7 Reed-Muller Codes
Reed-Muller codes are an old and well understood class of codes. They can be seen
as a generalization of Reed-Solomon codes. Recall that for RS codes, a list of n code
locators, α1, . . . , αn were used. For an RM code, one code locator is extended to
a vector of length m, so instead of αi ∈ Fq, RM codes use αi = (αi1 , . . . , αim

) ∈
Fm

q [RB20, Chapter. 8, p. 64]. We say that RM codes operate with m variables.
Another difference between RS codes and RM codes is that RS codes operate over any
field Fq whereas it is most common to only work with binary RM codes, i.e. RM codes
over the binary field F2. In this thesis, only binary RM codes will be considered. There
are two parameters that define an RM code, the number of variables m which was
already introduced as the length of a code locator, and a parameter r that determines
the order or degree of the RM code. Let v1, . . . , vm denote the m variables. Since
we work with binary RM codes, each variable can be assigned either a 1 or a 0. The
parameter r determines the allowed degree of each term of the polynomial. For a
first-order RM code, i.e. an RM code with r = 1, only terms of degree at most 1 are
considered. Hence, for e.g. m = 4 (note that the notation below means 5 bits),

1 v4 v3 v2 v1 ∈ F5
2.

24 3 Coding Theory

Note that the 1 denotes the 0-order term. For a second-order RM code, i.e. an RM
code with r = 2, all terms of degree at most 2 are considered, hence for e.g. m = 4,

1 v4 v3 v2 v1 v3v4 v2v4 v1v4 v2v3 v1v3 v1v2 ∈ F11
2 .

The parameters, m and r, together define an RM(r, m) code.

Since RM codes operate over the binary field F2, a straightforward way to define
them is in terms of binary vectors of length m (corresponding to assignments of the
m variables to either 0’s or 1’s) as in the following Definition 3.27.

Definition 3.27 (First-Order Reed-Muller Code). [Wac+, p. 95] A binary first-order
RM(1, m) is defined by a generator matrix which contains all 2m binary vectors of
length m as columns and additionally the all-one row.

For m = 4, such a generator matrix becomes,

GRM(1,4) =

1
v4
v3
v2
v1


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 ∈ F5×16
2 .

(3.9)

Note that the line between the first two rows has simply been added in order to show
the distinction between the all-one row and the 2m column-vectors of length m as
described in Definition 3.27. The order of the terms is marked to the left of the
matrix, i.e. the 0-order term comes first, then the v4 term followed by v3, etc.

An example of encoding is given: Let v1 = v2 = v4 = 1 and v3 = 0, then the
information bit string becomes (the first term, i.e. the 0-order term, can freely be
chosen as either 0 or 1. It is chosen as 1 in this case):

u = 1v4v3v2v1 = 11011 ∈ F5
2.

Multiplying with the generator matrix GRM(1,4), the codeword becomes:

c = u ·GRM(1,4) = 1001100101100110 ∈ F16
2 .

The example above indicates that anRM(1, 4) code has dimension k = 5 (the number
of rows of GRM(1,4) and the length of u) and length n = 16 (the number of columns
of GRM(1,4) and the length of c). A more formal introduction of the code parameters
for RM codes will later be given. In order to prove the minimum distance of RM
codes later, it is necessary to include another Theorem of first-order RM codes which
describes a recursive procedure. The following Theorem is stated without proof as
its extension Theorem to higher order RM codes is shown and proved later.

3.7 Reed-Muller Codes 25

Definition 3.28 (Recursive Construction of First-Order Reed-Muller Code). [Wac+,
p. 96] Given an RM(1, m) code, we can construct an RM(1, m + 1) code as follows:

RM(1, m + 1) = {(u, u + v) : u ∈ RM(1, m), v ∈ CRP },

where CRP = {(0, . . . , 0), (1, . . . , 1)} ∈ F2m

2 is a repetition code of length 2m.

When extending the generator matrix GRM(1,4) in Equation (3.9) to a generator
matrix for a second-order RM code, GRM(2,4), then the

(
m
r

)
=
(4

2
)

= 6 second-order
terms are added, i.e. the terms v3v4, v2v4, v1v4, v2v3, v1v3, and v1v2:

GRM(2,4) =

1
v4
v3
v2
v1

v3v4
v2v4
v1v4
v2v3
v1v3
v1v2



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


∈ F11×16

2 .

This generator matrix indicates that an RM(2, 4) code has dimension k = 11 (the
number of rows) and length n = 16 (the number of columns). The following Theorem
is an extension of Definition 3.28 to higher order RM codes, and it also presents the
code parameters for RM codes.

Theorem 3.29 (Recursive Construction of Reed-Muller Codes). [MS77, p. 374]
Given an RM(r + 1, m) code and an RM(r, m) code, we can construct an RM(r +
1, m + 1) code of order r + 1 as follows:

RM(r + 1, m + 1) = {(u, u + v) : u ∈ RM(r + 1, m), v ∈ RM(r, m)}.

This gives a [2m,
∑r

i=0
(

m
i

)
, 2m−r]2 code.

Proof. The proof follows from Theorem 3.30.

The following Theorem 3.30 is stated without a proof. A proof can be found in
e.g. [MS77, p. 76]

Theorem 3.30 (Recursive Construction, (u, u + v)-Construction). [MS77, p. 76]
Given an [n, ku, du]2 code Cu and an [n, kv, dv]2 code Cv, then

C := {(u, u + v) : u ∈ Cu, v ∈ Cv}

is a [2n, ku + kv, min{2du, dv}]2 code.

26 3 Coding Theory

The parameters of RM(r, m) codes are summarized below:

• the length is n = 2m,

• the dimension is k =
∑r

i=0
(

m
i

)
which can also be explained by the following:

It follows from Definition 3.27 that the dimension of first-order RM codes is
m + 1 =

∑1
i=0
(

m
i

)
. We have seen that when extending from order r − 1 to

order r, then
(

m
r

)
rows are added to the generator matrix which means that the

dimension is also increased by
(

m
r

)
. Therefore, it follows that k =

∑r
i=0
(

m
i

)
=

1 +
(

m
1
)

+
(

m
2
)

+ · · ·+
(

m
r

)
.

• the minimum distance is d = 2m−r.

The decoding algorithm that will be used in this project is called the Reed decoding
algorithm. The Reed decoding algorithm can be seen as an extension of the majority
decision decoding that was used for repetition codes. One bit of the information
vector u is decoded at a time, and each element is decoded by computing different
votes for the value and then choose the value that the majority of the votes chose. In
this context, one vote is constructed as the sum of a subset of the bits of the codeword
c = c0c1 · · · cn−1.

A description of the general construction of such votes is not easily given. Below is
given an example of how to construct a single vote for a 1-order bit of u. For a more
detailed description of the algorithm, see e.g. [MS77, p. 387].

Consider an RM(1, 4) code. Recall that the generator matrix is

GRM(1,4) =

1
v4
v3
v2
v1


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 ∈ F5×16
2 .

Let the information bit string be given as

u = u0u4u3u2u1,

and the corresponding codeword becomes

c = u ·GRM(1,4) = c0c1 · · · cn−1.

Note that as usual the indices of the bits in u are ordered such that they match the
order of the rows in GRM(1,4) while the bits in c are simply ordered from 0 to n− 1.

3.7 Reed-Muller Codes 27

One bit of u is decoded at a time from back to front. Hence, the first step is to decode
u1 by finding some votes. Consider the two first columns of GRM(1,4) and imagine
that only this part of the generator matrix was multiplied with u:

u0u4u3u2u1 ·


1 1
0 0
0 0
0 0
0 1

 =
[
u0 u0 + u1

]
=
[
c0 c1

]

⇒ c0 + c1 = 2u0 + u1 =

{
1 if u1 = 1
0 if u1 = 0

The calculation above shows that c0 + c1 is equal to 1 if and only if u1 = 1. In other
words, c0 + c1 is one vote for the value of u1. Given the addition of an error vector,
there is a risk of voting for a wrong value. This is exactly why more than one vote is
computed, and the final decoded bit is decided by the majority of the votes. For each
of the first-order bits u1, . . . , u4, a total of 2m−r = 24−1 = 8 votes are constructed,
and hence even if 3 errors occurred, the majority of the 8 votes would still vote for
the correct value. Hence, it makes sense that an RM(1, 4) code can correct at most
⌊d−1

2 ⌋ = ⌊ 24−1−1
2 ⌋ = ⌊ 7

2⌋ = 3 errors.

Not all bits of u can be decoded just like that. When the r-order bits have been
decoded, then some changes need to be made: The problem should be reduced to
an RM instance of order r − 1. This means that when u1, . . . , u4 have been decoded,
then the problem is reduced to an instance of 0-order RM code by subtracting the
already decoded part from the current problem. This is done by computing

c′ = c− u1v1 − u2v2 − u3v3 − u4v4

= u01 + error.

The bit u0 is now determined by a single vote: If there are more 1’s than 0’s in c′,
then u0 = 1, and else u0 = 0 [MS77, p. 386-287].

The decoding algorithm is summarized below.

28 3 Coding Theory

Algorithm 2 Reed Decoding Algorithm [MS77, p. 386-387]
1: Input: A codeword c = c0c1 . . . cn−1 from an RM(r, m) code with generator

matrix G
2: Output: Information vector u
3: u← ””
4: while r ≥ 0: do ▷ decode the

(
m
r

)
r-order bits of u

5: upart ← ””
6: For each of the

(
m
r

)
r-order bits of u, construct at set votes. Prepend (i.e.

insert in front) the majority bit of votes to upart.
7: When all r-order bits are decoded, subtract the already decoded part from

the codeword
8: delete the last

(
m
r

)
rows of G

9: r ← r − 1
10: u.prepend(upart)
11: end while
12: return u

Except for first-order RM codes and RM codes with short length, RM codes have a
lower minimum distance than BCH codes. However, an advantage of RM codes is
their efficient decoding.[MS77, p. 370]

3.8 Shortening
Shortening is a process of obtaining a shorter code from an existing code. Given an
[n, k, d]q code C, the following procedure shortens the code by one position [Wac+,
p.57]:

1. Remove all codewords of C that does not have a ”0” at the first position.

2. Remove this ”0” from all the remaining codewords.

The shortened code gets the following parameters:

Lemma 3.31 (Parameters of Shortened Code). [Wac+, p. 57] Shortening a non-
degenerate [n, k, d]q code C (non-degenerate means that not all codewords have ”0” at
the first position) as described above gives an [n− 1, k − 1,≥ d]q code Cs.

Proof. Since 1 position is removed from each codeword, the length of Cs clearly be-
comes n − 1. In order to prove the dimension, the following fact is used: In a q-ary
linear code, for any fixed position j it holds that 1

q of the codewords of C have a ”0”

3.8 Shortening 29

at position j. Therefore, it follows that |Cs| = 1
q |C|. Since the number of codewords

in a linear code in general is expressed as the field size to the power of the dimension,
as stated in Subsection 3.3, then

|Cs| =
1
q
· qk = qk−1,

and hence the dimension of Cs is k− 1. The minimum distance of Cs is at least as big
as the minimum distance of C, because codewords are removed, and no new codewords
are added. Hence, if the minimum distance changes, then it can only increase, not
decrease.

Step 1 of the shortening procedure, i.e. fixing the first position to ”0”, corresponds to
removing the first row of the generator matrix G, step 2 of the shortening procedure,
i.e. removing the fixed first position, corresponds to removing the first column of the
G [Wac+, p. 57]. Note that a code can be shortened by any number of positions, the
procedure above is just repeated the preferred amount of times. When shortening a
code from a specific class, e.g. from the RS code class, then sometimes the shortened
code belongs to the same class. However, it can also happen that the shortened code
does not belong to the same class. An example is the following: Recall that a criteria
for a BCH code is that n | qm−1. It is very likely that a shortened BCH code does not
satisfy this criteria which means that it is possible that a shortened BCH code is not a
BCH code anymore. An example where the shortened code belongs to the same class
as the original code is the following: Consider a generalized RS code with parameters
[n, k, d]q. For simplicity, assume that the elements v′

1, v′
2, . . . , v′

n from the definition
of the generator matrix are all equal to 1. Then, according to Definition 3.18 the
GRS code has the generator matrix,

GGRS =


1 1 · · · 1

α1 α2 · · · αn

...
...

...
...

αk−1
1 αk−1

2 · · · αk−1
n

 .

By now removing the first row and the first column of GGRS , the generator matrix
for the shortened code then becomes,

GGRS (shortened) =

 α2 · · · αn

...
...

...
αk−1

2 · · · αk−1
n

 .

The arising code is itself a GRS code with the parameters [n− 1, k − 1,≥ d]q and the
n− 1 code locators α2, . . . , αn as the shortened code still satisfies the definition of a
GRS code.

30 3 Coding Theory

3.9 Combining Codes
Given two existing codes, it is possible to combine them to derive a new code. In
this Section, two such derived codes called product codes and concatenated codes are
introduced.

3.9.1 Product Codes
A product code is a technique to make a long code by combining two codes over
the same field. Given two codes C1 and C2 over the same field Fq, a product code
C = C1⊗C2, defined below, which is also over Fq can be derived. The codewords of C
can be seen as n1×n2 matrices where each row is a codeword in C1 and each column
is a codeword in C2. This means that the length of the product code C becomes
n1 · n2, where n1 and n2 denote the lengths of C1 and C2 respectively. More formally,
a product code is derived in the following way:

Definition 3.32 (Product Code). [Wac+, p. 105] Let C1 be an [n1, k1, d1]q code and
let C2 be an [n2, k2, d2]q code. Furthermore, let u be a k1× k2 array with information
symbols, represented as a matrix. The product code C = C1⊗C2 is obtained by encoding
each row of u by the code C1 and then each column by the code C2.

The following Theorem 3.33 presents the parameters of a product code.

Theorem 3.33 (Parameters of Product Code). [Wac+, p. 106] Let C1 be an [n1, k1, d1]q
code and let C2 be an [n2, k2, d2]q code. The product code C = C1 ⊗ C2 is an
[n1n2, k1k2, d1d2]q code.

Proof. As the information vector is now a k1k2 array which, during encoding, is
extended to an n1n2 array, the length and dimension follow by construction. The
minimum distance is proved by first showing that d ≥ d1d2 and then showing that
d = d1d2:
Let c be a non-zero codeword of C = C1⊗C2. It has a non-zero row, and this row has
at least d1 non-zero elements. Each of the corresponding d1 columns are therefore
non-zero and have at least d2 non-zero elements. Hence, d ≥ d1d2. The next step is
to prove that d = d1d2 which is done by constructing a codeword with exactly d1d2
non-zero elements: Let c1 be a non-zero codeword of C1 of minimal weight, and let c2
be a non-zero codeword of C2 of minimal weight. Choose u2 (the information vector
that is encoded to c2) such that the encoding of each row results in c1 in each row
where u2 is non-zero. Encoding each column results in c2 in all the columns where
c1 is non-zero. Hence, the codeword has weight wt(c1)wt(c2) = d1d2 which proves
that d = d1d2 [RB20, p. 48].

3.9 Combining Codes 31

It can be shown that the product code obtained by first encoding each row of u by
C1 and then each column by C2 is the same product code as the one obtained by first
encoding each column of u by C2 and then each row by C1. I.e. the order of encoding
does not matter. Furthermore, no matter the order of encoding, then each row of
every codeword of the product code is a codeword of C1 and each column of every
codeword of the product code is a codeword of C2. However, this proof is left out in
this thesis.

An advantage of a product code is that it is efficiently decodable as the decoders
for the two existing codes are simply used. Unfortunately, product codes are in
general not impressive in terms of minimum distance. Consider for example C1 =
C2 = RS(n = 255, k = 237). Recall that RS codes meet the Singleton bound from
Theorem 3.16 which means that d1 = d2 = 19. The product code C = C1 ⊗ C2
has parameters [65025, 56169, 361]. If C should meet the Singleton bound, then the
minimum distance should be

d = n− k + 1 = 65025− 56169 + 1 = 8857,

but the actual minimum distance is much smaller.

3.9.1.1 BCH/Repetition Product Code

In this Section, an example of a product code is given, and it will be investigated how
many errors it can correct: Let CBCH be a BCH code with parameters [15, 5,≥ 7]2
and generator matrix,

GBCH =


1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 1 0 1 1 0 0 1 0 1

 ∈ F5×15
2 ,

and let CREP be a repetition code with parameters [8, 1, 8]2 and generator matrix,

GREP =
[
1 1 1 1 1 1 1 1

]
∈ F1×8

2 .

Let the kREP × kBCH information array be given as

u =
[
1 1 0 0 1

]
∈ F1×5

2 .

In this example, the rows (or just row in this case) will be encoded first which is done
using the generator matrix of the BCH code, CBCH :

cBCH = u ·GBCH =
[
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1

]
∈ F1×15

2 .

32 3 Coding Theory

Now, each column is encoded with CREP which means that each element is repeated
nREP = 8 times:

c = GT
REP cBCH =



1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1


∈ F8×15

2 .

While decoding, it is interesting to analyse the error-correction. In general, we say
that a product code C = C1⊗C2 can correct ⌊d1−1

2 ⌋·⌊
d2−1

2 ⌋ errors which in this case is
⌊dBCH −1

2 ⌋ · ⌊dREP −1
2 ⌋ = ⌊ 7−1

2 ⌋ · ⌊
8−1

2 ⌋ = 3 · 3 = 9 errors. The following received word
r shows one possible distribution of 9 errors that can be corrected (the red numbers
mark the positions where an error has occurred. This means that the corresponding
bit in the codeword c above as been flipped):

c =



0 1 1 1 0 1 0 0 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 0 0 1 1 1 0 1


∈ F8×15

2 .

If the decoding begins with the decoder from CREP , then the majority decision decoder
will detect the errors in the first three columns, and the three columns will be correctly
decoded as [1, 0, 0] as the majority of the bits in each of the columns are still correct.
When all columns have been decoded with the decoder from CREP , then the row can
be decoded using CBCH which will happen without failure as there are no errors left.

However, it is possible to correct a much higher number of errors if they are nicely
distributed. Under the assumption that the decoder from CREP will be used first and
then the decoder from CBCH afterwards, the following distribution of errors is the

3.9 Combining Codes 33

best possible:

r =



0 1 1 0 1 0 1 1 1 1 0 0 0 1 0
0 1 1 0 1 0 1 1 1 1 0 0 0 1 0
0 1 1 0 1 0 1 1 1 1 0 0 0 1 0
0 1 1 1 0 1 0 0 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 0 0 1 1 1 0 1


∈ F8×15

2 .

First, each column is decoded using the decoder from CREP , and as the majority of
the bits in every column except for the first three columns is correct, then the decoder
will wrongly decode the first three columns but successfully decode the rest. Luckily,
the BCH code can correct ⌊ 7−1

2 ⌋ = 3 errrors which means that after full decoding, all
60 errors will be corrected. While it is of course unlikely to get a perfect distribution
of errors randomly, it is worth noting that the error correction capability relies on
the distribution of errors. Furthermore, it should also be taken into account that the
decoding order can vary.

3.9.2 Concatenated Codes
A concatenated code is another technique to derive a new code by combining two
codes. Concatenated codes are quite similar to product codes, but an important
difference is that for a concatenated code, the two existing codes that are combined
are not over the same field: Instead, a code over a big field Fqm is combined with
a code over a small field Fq to obtain a concatenated code over the small field Fq.
During encoding as well as decoding, the trick is to shift between the small field
Fq and the big field Fqm . Concatenated codes are not as good at correcting single
Fq-errors as a product code, but on the other hand concatenated codes are good
at dealing with a combination of single and burst errors, i.e. blocks of consecutive
errors [RB20, p. 50]. The concatenated code is formally defined below:

Definition 3.34 (Concatenated Code). [Wac+, p. 105] Let C1 be an [n1, k1, d1]qm

code and let C2 be an [n2, k2 = m, d2]q code. Note that the dimension of C2 is equal
to the extension power of the field Fqm of C1. This means that an information array
u has size k2k1 over Fq and size k1 over Fqm as one element in Fqm is represented
as m elements in Fq. The concatenated code C = C1 ◦ C2 is obtained in the following
way: Represent the information array u as a row-vector in the extension field Fqm

which means that u ∈ Fk1
qm and encode it using C1. The result is a row-vector of length

n1. Now, expand each element of the row-vector to a column-vector of length m by
converting to the base field Fq. The results is an m×n1 matrix. Finally, encode each
of the n1 columns of length m with C2. The result is a codeword of size n2 × n1 over
Fq.

34 3 Coding Theory

The following Theorem 3.35 presents the parameters of a concatenated code.

Theorem 3.35 (Parameters of Concatenated Code). [RB20, p. 50] Let C1 be an
[n1, k1, d1]qm code and let C2 be an [n2, k2 = m, d2]q code. The concatenated code
C = C1 ◦ C2 is an [n1n2, k1k2,≥ d1d2]q code where all three parameters are expressed
over Fq.

Proof. The proof is similar to the proof of Theorem 3.33.

Concatenated codes usually have better parameters than product codes [Wac+, p. 110].

3.9.2.1 Reed-Solomon/Reed-Muller Concatenated Code

An example of a concatenated code is now given: Let the first code be an RS code
CRS with the parameters [8, 5, 4]24 and generator matrix GRS ∈ F5×8

24

GRS =


1 1 1 1 1 1 1 1
1 z4 z2

4 z3
4 z4 + 1 z2

4 + z4 z3
4 + z2

4 z3
4 + z4 + 1

1 z2
4 z4 + 1 z3

4 + z2
4 z2

4 + 1 z2
4 + z4 + 1 z3

4 + z2
4 + z4 + 1 z3

4 + 1
1 z3

4 z3
4 + z2

4 z3
4 + z4 z3

4 + z2
4 + z4 + 1 1 z3

4 z3
4 + z2

4
1 z4 + 1 z2

4 + 1 z3
4 + z2

4 + z4 + 1 z4 z2
4 + z4 z3

4 + z4 z3
4 + z2

4 + 1

 ,

and let the second code be an RM code CRM with the parameters [8, 4, 4]2 and gen-
erator matrix

GRM =


1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 ∈ F4×8
2 .

Note that the extension degree of the RS extension field F24 indeed matches the
dimension of the RM code. An information vector u is chosen, and in (3.10) it is
viewed in the extension field:

u = [1, 2, 3, 4, 5] ∈ F5
24 . (3.10)

The same information vector is in the base field F2 expressed in the following way,
where each element of Equation (3.10) is represented as a binary column:

u =


0 0 0 0 0
0 0 0 1 1
0 1 1 0 0
1 0 1 0 1

 ∈ F4×5
2 . (3.11)

This confirms that the dimension of the concatenated code is kRM kRS = 4 · 5 = 20.

3.9 Combining Codes 35

The information vector viewed in extension field as in Equation (3.10) is encrypted
by multiplying with GRS , and the following is obtained:

cRS = u ·GRS

=
[
1 0 z3

4 + z4 + 1 z3
4 + z2

4 + 1 z3
4 + z4 + 1 z3

4 + z2
4 + 1 z3

4 + z4 z2
4 + 1

]
∈ F8

24 .

The information vector has now been encoded using RS, however it is not fully en-
coded yet as the RM encoder should also be used. In order to be able to use the
RM encoder, the codeword needs to be represented in the base field F2 instead of
in the extension field F24 . Below, the codeword c is represented in the base field by
converting each element of cRS to a binary column vector of length 4:

cRS =


0 0 1 1 1 1 1 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
1 0 1 1 1 1 0 1

 ∈ F4×8
2 .

The final codeword for the product code is now obtained by multiplying each column
with GRM and concatenate all the codewords into one codeword. The result becomes
the following codeword of length n = nRSnRM = 8 · 8 = 64.

c = GT
RM cRS =



0 0 1 1 1 1 1 0
0 0 1 0 1 0 1 1
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 1
1 0 0 1 0 1 1 0
1 0 1 0 1 0 0 1
1 0 1 1 1 1 0 0


∈ F8×8

2 .

Decoding is done in the same manner as in the example in Section 3.9.1.1.

36

CHAPTER4
The HQC Public-Key
Encryption Scheme

The Hamming Quasi-Cyclic (HQC) cryptosystem was published in 2017 and is one of
the alternate candidates of round 3 of the NIST standardization process. Contrary to
most of the existing code-based cryptosystems such as classic McEliece, the security
of HQC does not partly rely on hiding the structure of an error-correcting code. In
the HQC cryptosystem, the error-correcting code that is being used is public, and the
security relies on variants of the syndrome decoding problem which is an NP-hard
problem.

In this section, the HQC cryptosystem will be presented. First, some necessary
preliminaries are introduced. Afterwards the cryptosystem is explained, and finally
the correctness, security, and known attacks are described.

4.1 Prerequisites
As in previous chapters, let F2 be the finite field of size 2. Let V be a vector space of
dimension n over F2 for some positive n ∈ Z. Let the product of u, v ∈ V be defined
as

uv = u rot(v)T = v rot(u)T = vu,

where

rot(v) =


v0 vn−1 · · · v1
v1 v0 · · · v2
...

...
vn−1 vn−2 · · · v0

 ∈ Fn×n
2 . (4.1)

The definition of multiplication above implies that elements of V can also be consid-
ered as polynomials in the ring R = F2[X]/(Xn − 1) [Agu+21a, p. 8]. In order to
convert elements from F2[X] to R, they are simply reduced modulo (Xn − 1).

38 4 The HQC Public-Key Encryption Scheme

A prime integer n is a primitive prime integer if the polynomial Xn − 1/(X − 1) is
irreducible in the ring R [Agu+21a, p. 8].

4.2 The Public-key Encryption (PKE) Version
The Public-key Encryption Version (PKE) is IND-CPA secure which is one of two
general requirements of a PKE presented in Section 2.3 (the other requirement is
correctness which the PKE version of HQC also satisfies, see Section 4.3 about the
correctness of HQC). As mentioned in Section 2.4, it is possible to make a transfor-
mation to obtain a KEM-DEM version that achieves IND-CCA2 which is the highest
standard security requirement for a public-key cryptosystem [Agu+21a, page 15].
However, in this thesis only the PKE version will be considered.

The HQC encryption scheme uses two different codes [Sch+20, p. 3]:

• A public code C of length n and dimension k. For this code, it is assumed
that there are both an efficient encoding algorithm and an efficient decoding
algorithm, both publicly known.

• The second code is a random binary code of length 2n with a parity-check
matrix defined as (I, rot(h)) ∈ Fn×2n

2 where h is a vector of length n generated
uniformly at random during the key generation, and I is the n × n identity
matrix. It is assumed that no one knows an efficient decoding algorithm for the
second code.

In this Chapter, it will not be covered how the public code C (the first code mentioned
above) is chosen. This will instead be covered in Chapter 6 in which the choice of
C will be thoroughly investigated. The second mentioned code is a random code, a
concept which is defined below:

Definition 4.1 (Random Binary Linear Code). [MO15, p. 207] A code C is a random
binary linear code if it is generated by a matrix G ∈ Fk×n

2 of which the entries are
chosen independently and uniformly at random from F2 with the restriction that G
has rank k. It follows that the entries of the corresponding parity-check matrix H are
also independently and uniformly at random distributed in F2.

The second code is not only a random code, it is also of the type called quasi-cyclic
codes. The benefit of using quasi-cyclic codes is that the public key size kan be
reduced significantly, see Section 4.6.

Definition 4.2 (Quasi-Cyclic Codes). [Agu+21a, p. 10] Let c = (c0, . . . , cs−1) ∈ Fsn
2

where ci ∈ Fn
2 for i = 0, . . . , s − 1, for some s ∈ N>0. An [sn, k, d]2 linear code C

4.2 The Public-key Encryption (PKE) Version 39

is Quasi-Cyclic of index s if for any c = (c0, . . . , cs−1) ∈ C a simultaneous circular
shift as in Definition 3.11 to all c0, . . . , cs−1 is also a codeword in C. In other words,
by considering each block ci as a polynomial in the ring R = F2[X]/(Xn − 1), the
code C is Quasi-Cyclic of index s if for any c = (c0, . . . , cs−1) ∈ C it holds that also
(X · c0, . . . , X · cs−1) ∈ C.

The random code is a quasi-cyclic code of index s = 2 because it has length 2n.

As mentioned in Section 2.3, a public-key encryption scheme consists of the three
algorithms: Key generation, Encryption, and Decryption. The three algorithms in
HQC are presented in Algorithms 3, 4, and 5 below.

In the setup fase before the keys are generated, some parameters are chosen: A code
C of length n ≈ n1n2, dimension k, and error correction capability δ. Note that δ
is the number of errors that we at least expect to be able to correct. The code C is
a product or concatenated code of two codes of lengths n1 and n2 respectively. In
order to avoid algebraic attacks (see Section 4.5), n is chosen as the smallest primitive
prime greater than n1n2 [Agu+21a, p. 16]. Furthermore, the weight parameters ω,
ωr, and ωe, used to predetermine the Hamming weight of randomly generated vectors,
are chosen. Note that the inputs to the Key Generation Algorithm 3 should be seen
as inputs to Algorithms 4 and 5 as well.

Algorithm 3 Key Generation [Agu+21a, p. 16]
1: Input: param = (n, k, δ, ω, ωr, ωe)
2: Output: public key pk = (h, s) and secret key sk = (x, y)
3: h $←− R ▷ choose uniformly at random
4: (x, y) $←− R2 such that wt(x) = wt(y) = ω ▷ choose uniformly at random
5: s← x + hy
6: return pk = (h, s), sk = (x, y)

In Algorithm 3, both h, x, and y are chosen uniformly at random, but with the
requirement that both x and y have Hamming weight ω. Such a requirement does
not exist for h. Note that the public key pk consists of the two ingredients for an
instance of the syndrome decoding problem, i.e. a parity-check matrix represented as
the vector h and a syndrome s. It follows from Algorithm 3 that retrieving the secret
key sk from the public key pk requires solving an instance of the syndrome decoding
problem:

s = x + hy =
(
x y

)(I
rot(h)T

)
= eHT .

40 4 The HQC Public-Key Encryption Scheme

Algorithm 4 Encryption [Agu+21a, p. 16]
1: Input: public key pk = (h, s) and plaintext pt = m
2: Output: ciphertext ct = (u, v)
3: e′ $←− R such that wt(e′) = ωe ▷ choose uniformly at random
4: (r1, r2) $←− R2 such that wt(r1) = wt(r2) = ωr ▷ choose uniformly at random
5: u← r1 + hr2
6: v← C.Encode(m) + sr2 + e′

7: return ct = (u, v)

In the Encryption algorithm, e′, r1, and r2 are chosen uniformly at random, but with
the requirement that e′ has Hamming weight ωe, and r1 and r2 both have Hamming
weight ωr. Furthermore, another instance of the syndrome decoding problem appears,
this time in order to retrieve r1 and r2:

u = r1 + hr2 =
(
r1 r2

)(I
rot(h)T

)
= ẽHT .

It follows from Algorithm 4 that

v = C.Encode(m) + sr2 + e′

= C.Encode(m) + (x + hy)r2 + e′

= C.Encode(m) + xr2 + hyr2 + e′,

and as long as the weight of h is not too small, then the vector,

sr2 + e′ = xr2 + hyr2 + e′,

also has large weight. Hence, v can be seen as an erroneous codeword of C with an
error of weight wt(sr2 +e′) which is hopefully large. If the error is large enough, then
the erroneous codeword v cannot be efficiently decoded, and hence the ciphertext
cannot be decoded without the secret key.

Algorithm 5 Decryption [Agu+21a, p. 16]
1: Input: secret key sk = (x, y) and ciphertext ct = (u, v)
2: Output: decrypted message m
3: v′ ← v− uy
4: m← C.Decode(v′)
5: return m

4.3 Correctness 41

From Algorithm 5, it follows that

v′ = v− uy
= (C.Encode(m) + sr2 + e′)− (r1 + hr2)y
= (C.Encode(m) + (x + hy)r2 + e′)− (r1 + hr2)y
= C.Encode(m) + xr2 + hyr2 + e′ − r1y− hr2y
= C.Encode(m) + xr2 + e′ − r1y,

is an erroneous codeword of C with an error xr2 + e′ − r1y of small weight, since
x, y, r1, r2, and e′ have small weights. For reference, the current version of HQC (for
security category I, see Chapter 6) uses ωr = ωe = 72 and ω = 65 to denote a small
weight for n = 17669 (n1n2 = 17664) [Agu+21b].

4.3 Correctness
The correctness of the HQC encryption scheme relies on the decoding capability of
the code C. Since the error of v′ is ev′ = xr2 + e′− r1y as explained above, C.Decode
correctly decodes v′ whenever [Agu+21a, p. 18]

wt(ev′) ≤ δ, (4.2)

where δ is the number of errors that C can correct at least. In order to compute the
probability of successful decoding, i.e. the probability of satisfying Equation (4.2), it
is necessary to understand the probability distribution of the weight of the error vec-
tor ev′ . In [Agu+21a, p. 18], there is an analysis of the probability distribution of the
weight of ev′ in which the assumption that each coordinate of ev′ is an independent
variable, is made. Using this assumption, it is possible to interpret the weight distri-
bution of ev′ as a binomial distribution with a probability parameter p. In [Agu+21a,
p. 21], they also present a graph showing a comparison between the weight of ev′

generated using HQC-128 (the version for security category I, see Chapter 6) and its
binomial approximation. Unfortunately, the graph shows that the assumption that
each coordinate of ev′ is independent does not exactly hold, and therefore only an
approximate decoding probability is known.

4.4 Security of HQC
The security of HQC relies on the hardness of the syndrome decoding problem. Recall
that

s = x + hy =
(
x y

)(I
rot(h)T

)
= eHT ,

42 4 The HQC Public-Key Encryption Scheme

where pk = (h, s) is the public key, and sk = (x, y) is the secret key. The public
key provides the parity-check matrix and the syndrome, and as long as the syndrome
decoding problem is hard, the secret key is safe. Exactly the same holds for the
instance of the syndrome decoding proble from the Encryption Algorithm 4:

u = r1 + hr2 =
(
r1 r2

)(I
rot(h)T

)
= ẽHT .

Recall from Chapter 2 that the minimal criteria for a public-key encryption scheme is
that it is IND-CPA secure, i.e. that an adversary should not be able to efficiently guess
which plaintext has been encrypted even if he knows it is one among two plaintexts
of his choice. This criteria is satisfied from the above arguments.

As mentioned, it is possible to make a transformation of the scheme to obtain a KEM
version that achieves indistinguishability against adaptive chosen-ciphertext attacks
(IND-CCA2) which is the highest standard security requirement for a public-key
cryptosystem [Agu+21a, p. 15]. However, this part will not be covered in this thesis.

4.5 Known Attacks
There are some attacks on the form of the polynomial generating the cyclic structure,
i.e. the polynomial xn − 1 which is used to generate the ring R = F2[x]/(xn − 1).
Without going into details, it will briefly be explained that this is the reason why
n is chosen as the smallest primitive prime integer greater than n1n2 [Agu+21a,
p. 43]. According to [Agu+21a, p. 43], such attacks are especially efficient when the
polynomial xn − 1 has many low degree factors, and in order to make such attacks
inefficient, it is ensured that xn − 1 has only the two irreducible factors, x − 1 and
xn−1 + xn−2 + · · · + x + 1. This is achieved by choosing n as the smallest primitive
prime integer greater than n1n2.

There is another important class of attacks: Recall the syndrome decoding problem
from Chapter 3. The best known algorithms to solve the syndrome decoding problem
belong to a class of algorithms known as information set decoding (ISD), initially
discovered by Prange in 1962 [Pra62]. This means that ISD algorithms play an
important part in the list of known attacks against code-based cryptosystems such as
HQC. In this Section, Prange’s ISD algorithm is presented. Some of the researchers
that have later improved Prange’s algorithm are the following: Lee and Brickell
in 1988 [LB88], Stern in 1989 [Ste89], Dumer in 1996 [Dum96], Both and May in
2018 [BM18], and recently Bellini and Esser in 2021 [EB21a].

4.5.1 Prange’s Information Set Decoding
The goal in Prange’s ISD algorithm is to guess k error-free positions and use them
to retrieve the message from the codeword. Note that in general the following holds:

4.5 Known Attacks 43

Given a codeword c ∈ Fn
q and generator matrix G ∈ Fk×n

q , the corresponding message
m ∈ Fk

q can be retrieved in the following way: Choose k independent columns of G,
and let Ĝ be a matrix containing only these k columns. Then:

m = c · Ĝ−1.

Prange’s ISD algorithm can then be described by the following steps [WP21, p. 41]:
Let G ∈ Fk×n

q be a generator matrix, m ∈ Fk
q a message, and c ∈ Fn

q the correspond-
ing codeword. Then:

1. Choose a random set I of size k, with distinct elements such that I ⊂ {0, . . . , n−
1}, |I| = k.

2. Construct a submatrix GI of the generator matrix G consisting of the k columns
indexed by I.

3. Denote

cI = m ·GI + eI .

If we are lucky and wt(eI) = 0, then the message m can be decoded exactly by

m = cI · (GI)−1.

The ISD algorithm can formally be stated as:

Algorithm 6 Prange’s Information Set Decoding [WP21, p. 41]
1: Input: generator matrix G ∈ Fk×n

2 , codeword c ∈ Fn
2 , and a number of errors t

2: Output: the message m ∈ Fk
2

3: choose a set I of distinct elements such that I ⊂ {0, . . . , n − 1}, |I| = k, at
random

4: cI ←m ·GI + eI
5: m̂← cI · (GI)−1

6: if wt(m̂ ·G− c) = t do:
7: m← m̂
8: else do:
9: go to line 3

10: return m

Hence, only if the positions in I are error-free, then the message m can be retrieved.
An important question is what the probability of getting only error-free positions in

44 4 The HQC Public-Key Encryption Scheme

I is. If t errors occurred, then there are
(

n−t
k

)
ways of choosing k error-free positions

which means that the probability becomes(
n−t

k

)(
n
k

) .

In order to use Prange’s ISD algorithm for measurements and comparisons, a factor
known as Prange’s work factor can be used and is defined as [WP21, p. 42]:

WF =

((
n−t

k

)(
n
k

))−1

· k3,

where k3 is the work per iteration.

4.6 Advantages and Disadvantages
Some of the advantages of the HQC cryptosystem are [Agu+21a, p. 43-44]:

• It relies on a well-understood NP-hard problem: The Syndrome Decoding Prob-
lem.

• It does not rely on hiding the structure of the code being used in contrast to
many other code-based cryptosystems such as Classic McEliece [Sch+20, p. 1]

• Small public key size: The public key pk = (h, s) consists of the two ingredients
used in an instance of the syndrome decoding problem: The parity-check matrix,
or a representation of it in terms of the vector h and the syndrome s. The fact
that the quasi-cyclic structure is used makes it possible to represent the full
parity-check matrix by only the vector h of length n instead of storing a full
matrix. Hence, the public key size in the HQC cryptosystem is much smaller
compared to the public key size in other code-based cryptosystems such as
Classic McEliece.

• Close estimations of decryption failure rate.

• Efficient implementations.

Some of the disadvantages are [Agu+21a, p. 44]:

• As explained in Section 4.3, the analysis of the probability of successful decoding
still needs some improvements.

4.6 Advantages and Disadvantages 45

• Low encryption rate: If we want to encrypt messages with more than 128 or
192 or 256 bits, depending on the chosen security category, see Chapter 6,
then it is necessary to either split the message in chunks of size 128, 192, or
256, and run multiple instances of HQC, or to define a new set of parameters
(n, n1, n2, k, ω, ωe, ωr, δ) which allows for the preferred length of the message.
In other words, the encryption scheme is not flexible in terms of changing the
number of bits in the message that is encrypted [Agu+21a, p. 44].

46

CHAPTER5
Implementation

The error-correcting codes that were presented in Chapter 3 have been implemented
in the python library, SageMath. Furthermore, implementations of the product code
and concatenated code constructions have been developed such that they take two
error-correcting codes as input and construct the derived code. Finally, the HQC
encryption scheme has been implemented. All the implementations can be found in
the Github repository https://github.com/AmalieDue/HQC.

The Github repository contains two folders, notebooks and py files. The two
folders contain the exact same files, but in notebooks they are in Jupyter Notebook
format, and in py files the notebooks are converted to .py files for use on the DTU
HPC cluster hardware.

The implementation has been structured as python classes in the following way:

• One class for each code: RSCode, RMCode, BCHCode, and RepetitionCode.

• One class for each type of derived code: ConcatenatedCode and ProductCode.
Each class takes two instances of error-correcting code classes as input.

• One class for HQC: HQC. This class takes an instance of either ConcatenatedCode
or ProductCode as input. It can also just take an instance of one of the error-
correcting code classes as input which has been added as a part of the testing,
see Chapter 6.

5.1 Implementation of Error-Correcting Codes
In this section, the implementation of each error-correcting code will be described.
First, the general structure which is the same for all four codes is described:

When using a class, the first step is to define an instance of the chosen class with its
necessary parameters. Below is a generic example, where ”X” can be replaced directly
by either RS, RM, BCH, or Repetition.

https://github.com/AmalieDue/HQC

48 5 Implementation

1 C = XCode(parameter1, parameter2, ...)

Listing 5.1: Generic example of defining an instance of a code class.

Each code class can handle the following three different types of input:
1 m = [1,2,3,4,5,6,7] #list of integers
2 m = '101010110111010' #bit string
3 m = [1, z4, z4 + 1, z4^2, z4^2 + 1] #list of elements from finite field
4 #in this case from GF(2**4)

Listing 5.2: Data types that can be handled.

Each code class has an Encoding and Decoding function which are called in the
following way:

1 m = '.....' #some message
2

3 c = C.Encoding(m, out = 'pol') #codeword is saved in c
4

5 d = C.Decoding(c, out = 'int') #decoded word is saved in d

Listing 5.3: Encoding and Decoding functions.

The Encoding and Decoding functions both take an input out. This input can be
used to specify which data type the output should have. Possible values for the out
input are: 'int', i.e. integer representation, 'bin', i.e. bit string representation, and
'pol', i.e. polynomial representation, corresponding to the three different types of
input defined above.

The encoding and decoding algorithms implemented are the ones presented in Chap-
ter 3.

5.1.1 Reed-Solomon Code
In the implementation of the RS code, the generator matrix is constructed as in
Definition 3.18 with

v′
i = 1 for i = 1, . . . , n.

The code locators have been chosen in the following way: Let Fqm be the RS field,
and let α be a primitive element in Fqm . Then the code locators are chosen as

αi = αi−1 for i = 1, . . . , n.

In Listing 5.4, the inputs to the RS code are shown, and they are given example
values.

5.1 Implementation of Error-Correcting Codes 49

1 C = RSCode(n=9, k=5, q=2**4, shortening = 0)

Listing 5.4: An instance of the RS class with example parameters.

The RS class takes the following inputs, with some being optional:

• The length n.

• The dimension k. (The minimum distance is derived from n and k and is
therefore not given as input).

• The field size q.

• (Optional) The amount of shortening: The RS code is shortened by the input
value. If no value is input, the instance defaults to 0, i.e. no shortening.

An example of encoding and decoding with this class is given below. There will
not be examples for the other error-correcting code classes as they follow the same
procedure.

First, encoding:
1 C = RSCode(n=9, k=5, q=2**4, shortening = 0)
2

3 m = [1,2,3,4,5,6,7] #list of integers
4

5 c = C.Encoding(m, out = 'pol')
6 print('codeword:', c)
7

8 Out[]: codeword: (1, 0, z4^3 + z4 + 1, z4^3 + z4^2 + 1, z4^3 + z4 + 1, z4^3 +
z4^2 + 1, z4^3 + z4, z4^2 + 1, z4^2, 1, z4^3, z4^3 + 1, z4^3 + z4 + 1, z4^3
+ z4^2 + z4 + 1, z4^2 + z4 + 1, z4^2, z4, z4^3 + z4^2 + z4)

Listing 5.5: Encoding with RSCode class.

Then, decoding:
1 d = C.Encoding(c, out = 'pol')
2 print('decoded word:', d)
3

4 Out[]: decoded word: [1,2,3,4,5,6,7,0,0,0]

Listing 5.6: Decoding with RSCode class.

Note that the decoded word is the message plus some zero padding. This happens if
the length of the message is not a multiple of the dimension k. The message is then
zero padded in order to get a multiple of k.

50 5 Implementation

5.1.2 Reed-Muller Code
In Listing 5.7, the inputs to the RM class are shown, and they are given example
values.

1 C = RMCode(r = 1, m = 4, q = 2)

Listing 5.7: An instance of the RMCode class.

The inputs to the RM class are:

• The order r.

• The number of variables m.

• The field size q. However, current implementation only supports q = 2.

5.1.3 BCH Code
In Listing 5.8, the inputs to the RM class are shown, and they are given example
values.

1 C = BCHCode(n = 31, b = 1, D = 11, q = 2, shortening = 0)

Listing 5.8: An instance of the BCHCode class.

The inputs to the BCH class are:

• The length n.

• The parameter b.

• The minimum distance of the underlying RS code D.

• The field size q. However, current implementation only supports q = 2.

• (Optional) The amount of shortening: The BCH code is shortened by the
input value. If no value is input, the instance defaults to 0, i.e. no shortening.

As the BCH code is a subfield subcode of an RS code, the decoder from the RS class
is used for decoding the BCH code. This means that an instance of the RSCode class
is defined inside the BCHCode class such that the RS decoding algorithm can be used.
However, this is done automatically, so the user can just use the BCH as usual with
the Encoding and Decoding functions.

5.2 Implementation of Derived Codes 51

5.1.4 Repetition Code
In Listing 5.9, the inputs to the RM class are shown, and they are given example
values.

1 C = RepetitionCode(n = 5, q = 2)

Listing 5.9: An instance of the RepetitionCode class.

The inputs to the Repetition class are:

• The length n.

• The field size q. However, current implementation only supports q = 2.

5.2 Implementation of Derived Codes
A ProductCode class and a ConcatenatedCode class have been implemented. An
instance of the ProductCode class is initialized as

1 C = ProductCode(code1, code2)

Listing 5.10: An instance of the ProductCode class.

and similarly for the concatenated code:
1 C = ConcatenatedCode(code1, code2)

Listing 5.11: An instance of the ConcatenatedCode class.

where code1 and code2 both are an instance of one of the error-correcting code classes.
The ProductCode and ConcatenatedCode class both have Encoding and Decoding
functions, exactly as the previous classes.

An example with a product code is given below:

1 C = ProductCode(RSCode(n=9, k=5, q=2**4), RSCode(n=7, k=3, q=2**4))
2

3 m = '11001100110011001100' #the message is initialized
4

5 c = C.Encoding(m, out = 'bin')
6 print("codeword: ", c)
7

8 Out []: codeword : 110011111000000000010010000010111010

Listing 5.12: Encoding with the ProductCode class.

52 5 Implementation

and then decoding:
1 d = C.Decoding(c, out = 'bin')
2 print("decoded word:", d)
3

4 Out[]: decoded word : 11001100110011001100

Listing 5.13: Decoding with the ProductCode class.

5.3 Implementation of HQC
Finally, the HQC cryptosystem has been implemented. An instance of the HQC class
is initialized as

1 Code1 = BCHCode(n = 1023, b = 1, D = 115, q = 2, shortening = 257)
2 Code2 = RepetitionCode(n = 31, q = 2)
3 HQC_Code = ProductCode(Code1,Code2)
4

5 HQC = HQC(w = 65, w_e = 72, w_r = 72, C = HQC_Code, key_type = 'pol',
simulation = False, single_code = False)

Listing 5.14: An instance of the HQC class.

The inputs to the HQC class are:

• The weight parameters, w, w_e, and w_r.

• The underlying error-correcting code C.

• The data type of the public key and secret key, key_type. Possible values are:
'pol', 'int', and 'bin' as usual. The default value is 'pol' as this is the
most efficient data type for the implementation.

• A parameter simulation which specifies whether simulation tests are run. Pos-
sible values are True and False, with False being the default. If True multiple
tests detailed in Chapter 6 are performed, if False no tests are performed.

• A parameter single_code. Possible values are True and False, default is
False. If True is given, the implementation knows that it should handle C as a
single code instead of a product code or a concatenated code. This parameter
has been added as a part of the testing and analysis.

There are three functions in the HQC class, KeyGen, Encrypt, and Decrypt. However,
only the Encrypt and Decrypt functions should be used by the user. The KeyGen is
automatically called when an instance of the HQC class is initialized such that the
key generation is a part of the setup fase.

5.3 Implementation of HQC 53

Find below an example of how to use the HQC class:
1 HQC = HQC(w = 3, w_e = 3, w_r = 3, C = ConcatenatedCode(RSCode(n = 15,

k = 7, q = 2**4), RMCode(r = 1, m = 3, q = 2)), key_type = 'pol',
simulation = False, single_code = False)

2

3 print('Public key: ', C.pk)
4 print('Secret key: ', C.sk)
5

6 Out []: Public key: (a^119 + a^118 + a^117 + a^116 + a^115 + a^112 + a^111
+ a^110 + a^109 + a^107 + a^105 + a^104 + a^102 + a^101 + a^99 + a^97

+ a^95 + a^92 + a^91 + a^90 + a^88 + a^87 + a^86 + a^83 + a^81 + a^79 +
a^77 + a^76 + a^75 + a^74 + a^73 + a^71 + a^69 + a^68 + a^67 + a^65 +

a^63 + a^58 + a^55 + a^54 + a^50 + a^47 + a^46 + a^44 + a^41 + a^40 + a
^35 + a^33 + a^31 + a^29 + a^28 + a^25 + a^24 + a^20 + a^19 + a^18 + a
^17 + a^16 + a^14 + a^13 + a^8 + a^7 + a^4 + a^3 + 1, a^118 + a^115 + a
^113 + a^111 + a^107 + a^99 + a^97 + a^96 + a^95 + a^94 + a^90 + a^87 +
a^84 + a^83 + a^82 + a^80 + a^79 + a^77 + a^74 + a^71 + a^68 + a^65 +

a^64 + a^63 + a^60 + a^59 + a^58 + a^57 + a^54 + a^52 + a^51 + a^49 + a
^41 + a^40 + a^39 + a^37 + a^36 + a^33 + a^32 + a^31 + a^30 + a^29 + a
^28 + a^26 + a^24 + a^21 + a^20 + a^19 + a^18 + a^16 + a^14 + a^12 + a
^9 + a^7 + a^3 + a^2 + a + 1)

7

8 Secret key: (a^116 + a^51 + a, a^88 + a^56 + a^13)

Listing 5.15: An example initialization of the HQC class.

Encryption using the initialized HQC class:
1 m = '1010101010101010101010101010'
2

3 c = C.Encrypt(m, out = 'bin')
4 print('ciphertext:', c)
5

6 Out []: ciphertext: ('
00110100101010111110010101101111101010111000001010100011000101011

7 0001100011110010101110101111110110000110010100010000010', '
001011110000101011100011010011101001010011000110010000010110110001

8 001100010110100100011010110011100001000111000000110101')

Listing 5.16: Encryption with the HQC class.

Decrypting the ciphertext:
1 d = C.Decrypt(c, out = 'bin')
2 print('plaintext:', d)
3

4 Out []: plaintext: 1010101010101010101010101010

Listing 5.17: Decryption with the HQC class.

As seen the resulting plaintext matches the message m.

54

CHAPTER6
A Better Choice of C?

Notice: Unfortunately, late in the process it was spotted that the way h is generated
in the SageMath implementation is different from the way it is generated in the C code
submitted to NIST [Agu+21b]. In practice, it means that a h generated with the
SageMath code will have any Hamming weight between 0 and n will equal probability
whereas a h generated with the C code always will have Hammign weight around n

2 for
large n. However, it does not have an effect on the security level estimates presented
in this Chapter.

In this Chapter, the choice of the public code C that is used in HQC will be investi-
gated. Recall that there should exist both a public efficient encoding algorithm and
a public efficient decoding algorithm for C. One thing is to choose a code class for C,
another thing is to choose a set of parameters for C that makes the encryption scheme
secure. The security level is measured as an estimate of the attack cost required to
break the encryption scheme given the chosen set of parameters [EB21b, p. 1]. One
such estimation is Prange’s workfactor as described in Section 4.5.1, but many similar
algorithms with improvements have later been developed. In order to compute such
estimations, the syndrome decoding estimator in [BE21] will be used.

A way to compare the different submissions to the NIST standardization process is to
divide them into different security categories. NIST has defined 5 different categories,
but only category I, III, and V are of interest in this context [20221]:

Category Security description
I At least as hard to break as AES128 (exhaustive key search)
III At least as hard to break as AES192 (exhaustive key search)
V At least as hard to break as AES256 (exhaustive key search)

Table 6.1: Security Categories [20221].

A KEM scheme that aims to match security category I should have k ≥ 128 such
that an AES128-key can be exchanged (recall the definition of a KEM scheme in
Section 2.4). Similarly, a KEM scheme that aims to match security category III and
V, respectively, should have k ≥ 192 and k ≥ 256, respectively.

56 6 A Better Choice of C?

This chapter will focus on security category I.

In the first version of HQC submitted to NIST in 2017, the code C was chosen as
a product code of a shortened BCH code and a repetition code with the following
parameters for security category I (taken from the implementation package from
2020/05/29 [Agu+21b]):

CBCH = [766, 256, 115]2, CRep = [31, 1, 31]2,

C = CBCH ⊗ CRep = [23869, 256, 3751]2, (n1n2 = 23746)
ω = 67, ωr = ωr = 77.

The security level estimates can be calculated using the syndrome decoding estimator
in [BE21] in the following way: The estimator takes three inputs, n, k, and w. Note
that the inputs refer to the parameters of the random code and not the parameters
of C. Recall from the beginning of Chapter 4 that the random code has length 2n
and dimension n (the dimension could change a tiny bit if the parity-check matrix
turned out to not have full rank, but for simplicity it is assumed that the dimension
is n) which follows from the size of its parity-check matrix. Furthermore, the input
parameter w should be given the value 2ω since the random code is a quasi-cyclic
code with index s = 2. Hence, in order to compute the security level estimates for
the HQC product code the following is computed:

1 sd_estimate_display(n=47738,k=23869,w=154)

Listing 6.1: Usage of the syndrome decoding estimator in [BE21].

The syndrome decoding estimator outputs many different estimates, but only the
three following estimates will be presented throughout this Chapter: Prange from
1962 [Pra62], Stern from 1989 [Ste89], and Both and May from 2018 [BM18]. Note
that throughout this Chapter, Both and May will be referred to as BM in all tables.

Table 6.2 shows the output from the function call in Listing 6.1. This is the security
level estimates of the HQC product code of a shortened BCH code and a repetition
code calculated using the three estimates mentioned above, i.e. Prange, Stern, and
Both and May.

Category I
(2n = 47738)

Prange 196.6
Stern 174.8
Both-May (BM) 175.2

Table 6.2: The security level estimates computed using the syndrome decoding es-
timator [BE21] for the product code of a shortened BCH code and a
repetition code [Agu+21b].

6.1 A New Choice of C 57

In the HQC updates from May 2020, the submitters introduced a new choice of C, a
concatenated code of a shortened RS code and a duplicated RM code. This thesis
does not cover duplicated RM codes, therefore [Agu+21a, p. 25] should be used for
further details. In the HQC updates from October 2020, the submitters announced
that the concatenated code of a shortened RS code and a duplicated RM code is
strictly better than the product code of a shortened BCH code and a repetition code,
and therefore the product code would not be used anymore [Agu+21a, p. 3]. The
change of C did not change the encryption scheme, but it made it possible to decrease
the size of the public key by 17% while keeping an acceptable security level [Agu+21a,
p. 4]. In the newest version of HQC from 2021/06/06, the parameters for security
category I are as follows [Agu+21b]:

CRS = [46, 16, 31]2, CRM = [384, 8, 192]2,

C = CRS ◦ CRM = [17669, 128, 5952]2, (n1n2 = 17664),
ω = 66, ωr = ωe = 75

Table 6.3 below shows the security level estimates for the new code.

Category I Category III Category V
(2n = 35338) (2n = 71702) (2n = 115274)

Prange 166 237 300
Stern 145 213 276
Both-May (BM) 146 214 276

Table 6.3: The security level estimates computed using the syndrome decoding es-
timator [BE21] for the concatenated code of a shortened RS code and a
duplicated RM code [EB21b, p. 25].

When designing new codes in the following Section, the goal is to match or improve
the security level estimates in Table 6.3 without increasing the size of the public key
which is 2n due to the index s = 2 of the quasi-cyclic code.

6.1 A New Choice of C
Preferrably, the code C should satisfy each of the following:

• HQC should be secure: The security level estimates should be at least as big as
the security level estimates in Table 6.3.

• A public key size which is not larger than the existing size from the concatenated
code of a shortened RS code and a duplicated RM code.

58 6 A Better Choice of C?

• High error decoding capability.

• Small decoding failure rate.

• Efficient decoding in terms of computational speed.

With a large n, it is more likely that a good security level can be achieved, but on
the other hand we want n to be small to reduce the key size. Hence, it is a tradeoff
between good enough security level and small enough key sizes.

In this project, the following procedure has been used in order to design new codes:

1. Choose whether a product code or a concatenated code is used and choose code
classes.

2. Fix the dimension k1k2. Note that the dimension depends on the specific secu-
rity category.

3. Fix the length n1n2: Not too large as the public key size should not increase.

4. Derive the minimum distances d1 and d2.

5. Compute the security level estimates using the syndrome decoding estimator
in [BE21]. If they are acceptable, try it out. Otherwise, try to optimize the
parameters.

6.2 Code Design and Simulations
In this Section, the new codes that have been designed will be presented. Further-
more, the simulation experiments will be explained, and the results will be presented.
Afterwards, the results will be discussed.

In one simulation, 10, 000 trials have been run, and the following have been measured:

For given n1, n2, n, k, δ, ω, ωr, ωe,

• In how many of the 10, 000 trials was it possible to derive the correct message m
from decryption using the secret key sk? I.e. in how many trials was it possible
to decode v′ correctly using C.Decode(v′)?

• What is the minimum and maximum values of the weight of the error that makes
the codeword v′ erroneous across all 10, 000 trials? This means the minimum
and maximum values of wt(xr2 − r1y + e′).

6.2 Code Design and Simulations 59

• In how many of the 10, 000 trials was it possible to successfully decode v, i.e.
the second half of the ciphertext ct = (u, v)? The goal is to get 0/10, 000 as
decoding v means that the message can be decrypted without the secret key
indicating that the encryption scheme is not secure. Note that it this thesis, a
parameter ωh has been invented. The parameter shows the weight of h in trials
where it was possible to decode v.

• What is the minimum and maximum values of the weight of the error that makes
the codeword v erroneous across all 10, 000 trials? This means the minimum
and maximum values of wt(sr2 + e′). Preferrably, this weight should be such
that v cannot be decoded.

• The security level estimates computed using the syndrome decoding estimator
in [BE21].

To summarize the key information measured is how often it is possible to decode v′

as this indicates the success rate of the encryption scheme, as well as how often v can
be decoded, as this indicates the vulnerability of the encryption scheme.

Each simulation consists of 10,000 trials unless otherwise stated. One trial consists of
running the three HQC algorithms, key generation, encryption, and decryption. As
such each trial consists of 4 steps:

1. A pair of keys (public pk key and secret key sk) is generated.

2. A random message m of length k1k2 is generated.

3. m is encrypted to a ciphertext c using the public key pk

4. c is decrypted using the secret key sk.

The simulations were run on DTU DCC’s HPC cluster hardware [DTU21], which is
a Linux machine with 24 intel(r) xeon(r) cpu e5-2660 v3 @ 2.60ghz cores and 256 GB
of RAM.

6.2.1 Concatenated Codes
In this Section, the new concatenated codes that have been designed will be presented.
Table 6.4 shows an overview of the concatenated codes. Note that the first code in
Table 6.4, ”Concat 1”, is the original HQC concatenated code from the submission
to the standardization process. ”Concat 2” is a concatenated code of an RS code
and an RM code, but without shortening the RS code or duplicating the RM code.
The comparison of ”Concat 1” and ”Concat 2” provides an indication of what can be

60 6 A Better Choice of C?

achieved by shortening and duplicating. ”Concat 3” is similar to ”Concat 2” in terms
of parameters, but the RM code has been replaced with a BCH code.

Due to the construction of a concatenated code, the first code C1 should be in a larger
field than the second code C2. As the only non-binary code that has been implemented
is the RS code, C1 was restricted to the RS code class. Among the implemented error-
correcting codes, only the RM and BCH codes were possible classes for C2 as neither
the repetition code with k = 1 nor the RS code with the bound n ≤ q − 1 were
suitable as C2 in the concatenated code construction.

Table 6.4 shows the chosen parameters, with alternative parameters being discussed
in the following Sections. Table 6.4 also shows which security category each of the
concatenated codes aims to match.

Recall that δ in the last column of Table 6.4 is the number of errors we expect the
code to at least be able to correct. It is calculated as δ = ⌊d1−1

2 ⌋⌊
d2−1

2 ⌋.

Reference Category C1 C2 C = C1 ◦ C2 δ

Concat 1 I Shortened RS
[46, 16, 31]28

Duplicated RM
[384, 8, 182]2

[17669, 128,≥ 5952]2
(n1n2 = 17664)

≥ 1350

Concat 2 I RS
[138, 16, 123]28

RM
[128, 8, 64]2

[17669, 128,≥ 7872]2
(n1n2 = 17664)

≥ 1891

Concat 3 I RS
[139, 16, 124]28

BCH
[127, 8,≥ 61]2

[17669, 128,≥ 7564]2
(n1n2 = 17653)

≥ 1830

Table 6.4: Designed concatenated codes.

In the following Sections, the simulation results are presented.

6.2.1.1 Concat 1: Shortened RS Code and Duplicated RM Code

This is the security category I version of the original HQC concatenated code from
the submission to the standardization process. Table 6.5 shows the simulation results.
Note that the simulations in Table 6.5 have been run using the C code from the
submission [Agu+21b].

Table 6.5 shows that for ω = 66 and ωr = ωe = 75 (the values from the submission),
it is, as expected, possible to successfully decode v′ in 10, 000/10, 000 trials. I.e. in
every trial, it was possible to retrieve the correct message m from the Decryption
Algorithm 5 of the cryptosystem. For these values of ω, ωr, and ωe, the minimum
and maximum values of the weight of the error that makes v′ an erroneous codeword
of C, i.e. the minimum and maximum values of wt(xr2 − r1y + e′), are 6,087 and
9,109, respectively. Hence, it is possible to correct more errors than the lower bound
δ ≥ 1350 from Table 6.4. It was not possible to decode v in any of the 10, 000 trials.
It is interesting to note the overlap between the weights of the error that makes v′

6.2 Code Design and Simulations 61

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 66 10, 000/ [6, 087 ; 9, 109] [8, 551 ; 9, 081] 0/10, 000 Prange: 166
ωr = 75 10, 000 Stern: 145
ωe = 75 BM: 146
ω = 80 10, 000/ [6, 760 ; 9, 080] [8, 548 ; 9, 074] 0/10, 000 Prange: 201.6
ωr = 80 10, 000 Stern: 179.4
ωe = 80 BM: 179.9
ω = 85 9, 919/ [7, 113 ; 9, 087] [8, 557 ; 9, 107] 0/10, 000 Prange: 211.6
ωr = 85 10, 000 Stern: 189.1
ωe = 85 BM: 189.6
ω = 90 1, 451/ [7, 458 ; 9, 096] [8, 582 ; 9, 082] 0/10, 000 Prange: 221.7
ωr = 90 10, 000 Stern: 198.9
ωe = 90 BM: 199.3

Table 6.5: Simulation with 10,000 trials with the C code. Concatenated code with
parameters [17669, 128,≥ 5952]2 (n1n2 = 17664) of a shortened RS code
with parameters [46, 16, 31]28 and a duplicated RM code with parameters
[384, 8, 182]2.

erroneous (column 3) and the weights of the error that makes v erroneous (column
4). This is discussed in Section 6.3.

Table 6.5 shows that even with an increase of the weight parameters to ω = ωr =
ωe = 80, it is still possible to obtain 10, 000/10, 000 successful decodings of v′ and
0/10, 000 decodings of v. When the parameters ω, ωr, and ωe are increased further,
then the number of successful decodings of v′ decreases as expected.

Note that the security level estimates for ω = 66 and ωr = ωe = 75 are taken
from [EB21b, p. 25] and are the same as the estimates in the category I column in
Table 6.3.

6.2.1.2 Concat 2: RS Code and RM Code

The parameters for the RM code were chosen to be the original parameters for the RM
code used in ”Concat 1” before the code was duplicated. As such, the parameters
of the RM code are [128, 8, 64]2 [Agu+21a]. The parameters for the RS code are
then derived such that the parameters of the derived concatenated code match the
parameters of ”Concat 1” to allow for comparison. Table 6.6 shows the results of
various simulations with 10,000 trials. These simulations have been run using the
SageMath implementation presented in Chapter 5.

62 6 A Better Choice of C?

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimate

ω = 61 9, 994/ [4, 879 ; 5, 253] [6, 422 ; 12, 589] 0/10, 000 Prange: 163.3
ωr = 61 10, 000 Stern: 142.8
ωe = 61 BM: 143.3
ω = 62 9, 781/ [4, 998 ; 5, 394] [3, 192 ; 9, 086] 3/10, 000 Prange: 165.3
ωr = 62 10, 000 ωh = {0, 1, Stern: 144.7
ωe = 62 17663} BM: 145.2
ω = 63 8, 093/ [5, 119 ; 5, 469] [7, 948 ; 10, 403] 0/10, 000 Prange: 167.4
ωr = 63 10, 000 Stern: 146.6
ωe = 63 BM: 147.1
ω = 64 4, 021/ [5, 216 ; 5, 586] [7, 362 ; 9, 094] 0/10, 000 Prange: 169.4
ωr = 64 10, 000 Stern: 148.5
ωe = 64 BM: 149.0

Table 6.6: Simulation with 10,000 trials with the SageMath code. Concatenated
code with parameters [17669, 128,≥ 7872]2 (n1n2 = 17664) of an RS
code with parameters [138, 16, 123]28 and an RM code with parameters
[128, 8, 64]2.

Table 6.6 shows that with ω = ωr = ωe = 61, it is possible to achieve 9, 994/10, 000
successful decodings of v′ with security level estimates that approximately match the
category I security levels in Table 6.3. In order to achieve 10, 000/10, 000 successful
decodings of v′, one or some of the parameters ω, ωr, and ωe should be lowered to
60, and then the security level estimates would probably be a bit below the preferred
values in Table 6.3.

Table 6.6 shows that for ω = ωr = ωe = 62, it was possible to decode v in 3/10, 000
trials. Recall from Section 6.2 that the parameter ωh shows the weight of h in trials
where it was possible to decode v. Hence, Table 6.6 shows that in the 3 trials where it
was possible to decode v, the weight of h was 0, 1, and 17663 = n1n2−1, respectively.
This will be further investigated in Section 6.2.4.

In general, it is interesting whether another set of parameters would yield better re-
sults. However, when testing different parameters, it is important not to significantly
increase the size of the public key. Therefore, if the length of C1 is increased, then
the length of C2 should be decreased, or vice versa.

An example where the length of C1 is decreased is the following concatenated code: Let
C1 be an RS code with parameters [69, 15, 55]29 , and let C2 be an RM code with param-
eters [256, 9, 128]2, then the concatenated code C has parameters [17669, 135,≥ 7040]2
(n1n2 = 17664) and ⌊d1−1

2 ⌋⌊
d2−1

2 ⌋ ≥ 1701. As the lower bound of δ for this code is

6.2 Code Design and Simulations 63

lower than the lower bound of δ for ”Concat 2”, this alternative set of parameters is
not expected to be better.

An example where the length of C2 is decreased is the following concatenated code:
Let C2 be an RM code with parameters [64, 7, 32]2, then the RS code must be in
the extension field F27 due to the dimension of the RM code and the construction
of a concatenated code. This would imply that nRS ≤ q − 1 = 127 and hence the
concatenated code becomes too short. In conclusion, with this quick analysis no
better set of parameters for ”Concat 2” was found.

It is interesting to notice that (the lower bound of) δ of ”Concat 2” was actually
greater than (the lower bound of) δ of ”Concat 1”. Hence, it would make sense to
expect ”Concat 2” to perform better than ”Concat 1”, but the simulations showed
the opposite. This will be discussed in Section 6.3.

6.2.1.3 Concat 3: RS Code and BCH Code

In this Section, the simulation results using ”Concat 3” from Table 6.4 are presented.
”Concat 3” has similar parameters to ”Concat 2”, but the RM code has been replaced
by a BCH code. The RM code from ”Concat 2” is a first-order RM code (see Sec-
tion 3.7), and in general first-order RM codes have really good minimum distance. On
the other hand, the exact minimum distance of a BCH code is not easy to derive (see
Section 3.5), so perhaps ”Concat 3” could surprise. Table 6.7 shows the simulation
results.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimate

ω = 51 9, 988/ [3, 811 ; 4, 125] [2, 286 ; 12, 433] 2/10, 000 Prange: 143.2
ωr = 51 10, 000 ωh = {0, 1} Stern: 123.8
ωe = 51 BM: 124.2
ω = 52 8, 856/10, 000 [3, 954 ; 4, 232] [4, 122 ; 9, 102] 1/10, 000 Prange: 145.2
ωr = 52 10, 000 ωh = 17652 Stern: 125.7
ωe = 52 BM: 126.1
ω = 53 2, 346/10, 000 [4, 051 ; 4, 351] [4, 161 ; 13, 398] 0/10, 000 Prange: 147.3
ωr = 53 10, 000 Stern: 127.6
ωe = 53 BM: 128.0

Table 6.7: Simulation with 10,000 trials with the SageMath code. Concatenated
code with parameters [17669, 128,≥ 7564]2 (n1n2 = 17653) of an RS
code with parameters [139, 16, 124]28 and a BCH code with parameters
[127, 8,≥ 61]2.

Table 6.7 shows that for ω = ωr = ωe = 51, it was possible to achieve 9, 988/10, 000

64 6 A Better Choice of C?

successful decodings of v′, and for these parameters, the security level estimates
are lower compared to what could be obtained with ”Concat 1” and ”Concat 2”.
Furthermore, in order to achieve 10, 000/10, 000 successful decodings of v′, the value
of one or more of ω, ωr, or ωe should be reduced to 50 which would result in an even
lower security level estimate.

It was possible to decode v in 3 trials in total in Table 6.7 with ωh = {0, 1, 17652 =
n1n2−1}. This is exactly the same pattern as for ”Concat 3”, and this will be further
investigated in Section 6.2.4.

It will briefly be considered if better results could be achieved by an alternative set of
parameters: Again, either the length of C1 should be increased while the length of C2
is decreased, or the other way around. An example where the length of C1 is increased
is the following: Let C1 be an RS code with parameters [167, 16, 152]28 and let C2 be
a shortened BCH code with parameters [106, 8,≥ 40]2. Then the concatenated code
has parameters [17702, 128,≥ 6080]2 and δ = ⌊d1−1

2 ⌋⌊
d2−1

2 ⌋ ≥ 1425, hence the lower
bound of this δ is lower than the lower bound of δ of ”Concat 3”.

An example where the length of C2 is increased is the following: Let C1 be an RS code
with parameters [70, 16, 55]28 and let C2 be a shortened BCH code with parameters
[254, 8,≥ 127]2. Then the concatenated code has parameters [17780, 128,≥ 6985]2
and δ = ⌊d1−1

2 ⌋⌊
d2−1

2 ⌋ ≥ 1701. The lower bound of this δ is also lower than the lower
bound of δ of ”Concat 3”. Hence, with this quick analysis it was not possible to find
better parameters for ”Concat 3”.

6.2.2 Product Codes

In this Section, the new product codes that have been designed will be presented. Ta-
ble 6.8 shows an overview of the product codes. Note that the first code in Table 6.8,
”Product 1” is the original HQC product code used in the first version of HQC submit-
ted to NIST in 2017. Recall that a product code is constructed using two codes over
the same field. As three different binary codes have been implemented (RM, BCH,
and repetition), there are a lot of possibilities. A product code of a shortened BCH
code and an RM code instead of the repetition code will be investigated, as well as
a product code of a shortened BCH code and another BCH code. Furthermore, two
different product codes of two different RM codes will be investigated, and finally a
product code of two RS codes over the extension field F28 . Note that the parameters
of this product code, i.e. ”Product 5”, look different compared to the other product
codes. This is because it is the only non-binary product code that has been designed.

Note that all the new product codes have been designed such that their lengths match
the length of ”Concat 1” as ”Concat 1” is the currently best code for HQC.

6.2 Code Design and Simulations 65

Reference Category C1 C2 C = C1 ◦ C2 δ

Product 1 I Shortened BCH
[766, 256, 115]2

Repetition
[31, 1, 31]2

[23869, 256,≥ 3751]2
(n1n2 = 23746)

≥ 855

Product 2 I Shortened BCH
[138, 22,≥ 31]2

RM
[128, 8, 64]2

[17669, 176,≥ 1984]2
(n1n2 = 17664)

≥ 465

Product 3 I Shortened BCH
[139, 23,≥ 31]2

BCH
[127, 8,≥ 57]2

[17669, 184,≥ 1767]2
(n1n2 = 17653)

≥ 420

Product 4 I RM
[512, 256, 32]2

Repetition
[33, 1, 33]2

[16901, 256, 1056]2
(n1n2 = 16896)

240

Product 5 I RS [47, 4, 44]28 RS
[47, 4, 44]28

[17747, 128,≥ 1936]28

(n1n2 = 17672)
441 ≤ δ ≤
441·8 = 3528

Product 6 I RM [64, 7, 32]2 RM
[256, 37, 64]2

[16421, 259, 2048]2
(n1n2 = 16384)

465

Product 7 III RM
[128, 29, 32]2

RM
[256, 9, 128]2

[32771, 261, 4096]2
(n1n2 = 32768)

945

Table 6.8: Product codes.

6.2.2.1 Product 1: Shortened BCH Code and Repetition Code

This is the category I parameters of the product code that was used in the first
submission of HQC to the standardization process [Agu+21b]. Table 6.9 shows the
simulation results with the C implementation from the submission [Agu+21b], and
Table 6.10 shows the same simulations but with the SageMath implementation. By
including simulations with both implementations, it is possible to compare the Sage-
Math implementation described in Chapter 5 with the original C code.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 67 10, 000/ [6, 741 ; 7, 165] [11, 636 ; 12, 229] 0/10, 000 Prange: 196.6
ωr = 77 10, 000 Stern: 174.8
ωe = 77 BM: 175.2
ω = 77 10, 000/ [7, 363 ; 7, 801] [11, 661 ; 12, 220] 0/10, 000 Prange: 196.6
ωr = 77 10, 000 Stern: 174.8
ωe = 77 BM: 175.2
ω = 78 10, 000/ [7, 492 ; 7, 916] [11, 594 ; 12, 238] 0/10, 000 Prange: 198.6
ωr = 78 10, 000 Stern: 176.7
ωe = 78 BM: 177.2

Table 6.9: Simulation with 10,000 trials with the C code. Product code with pa-
rameters [23869, 256,≥ 3751]2 (n1n2 = 23746) of a shortened BCH code
with parameters [766, 256, 115]2 and a repetition code with parameters
[31, 1, 31]2.

66 6 A Better Choice of C?

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 67 10, 000/ [6, 743 ; 7, 157] [11, 600 ; 16, 803] 0/10, 000 Prange: 196.6
ωr = 77 10, 000 Stern: 174.8
ωe = 77 BM: 175.2
ω = 77 10, 000/ [7, 339 ; 7, 781] [9, 290 ; 12, 936] 0/10, 000 Prange: 196.6
ωr = 77 10, 000 Stern: 174.8
ωe = 77 BM: 175.2
ω = 78 10, 000/ [7, 422 ; 7, 886] [4, 862 ; 12, 206] 1/10, 000 Prange: 198.6
ωr = 78 10, 000 ωh = 0 Stern: 176.7
ωe = 78 BM: 177.2

Table 6.10: Simulation with 10,000 trials with the SageMath code. Same product
code as in Table 6.9.

Table 6.9 and 6.10 show that the SageMath implementation indeed is comparable
to the C implementation. For all simulations in both Tables, it was possible to suc-
cessfully decode v′ in 10, 000/10, 000 trials. Furthermore, the values in column 3, i.e.
the minimum and maximum of wt(xr2 − r1y + e′), are almost identical in the two
different Tables. However, the values in column 4, i.e. the minimum and maximum of
wt(sr2 + e′), are far from being identical. This is discussed in Sections 6.2.4 and 6.3.

Note that the security level estimates match those in Table 6.2.

6.2.2.2 Product 2: Shortened BCH Code and RM Code

In this product code, the repetition code has been replaced with an RM code. Fur-
thermore, the parameters have been chosen such that n matches the n from ”Concat
1” as ”Concat 1” is the currently best choice of C for HQC [Agu+21a, p. 3].

The security level estimates for this code are too low compared to the values in the
Tables 6.2 and 6.3. For ω = ωr = ωe = 55 it was also only possible to achieve
9, 956/10, 000 successful decodings of v′, so one or some of the parameters ω, ωr, and
ωe should be increased to 54 to achieve 10, 000/10, 000 successful decodings of v′.
Hence, ”Product 1” is indeed a better choice of C than ”Product 2” which was as
expected as a repetition code has an amazing minimum distance.

Table 6.11 shows that it was possible to decode v in 1 trial for ωh = 1. This is further
discussed in Sections 6.2.4 and 6.3.

6.2 Code Design and Simulations 67

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 55 9, 956/ [4, 255 ; 4, 581] [5, 700 ; 12, 028] 0/10, 000 Prange: 151.3
ωr = 55 10, 000 Stern: 131.4
ωe = 55 BM: 131.8
ω = 56 9, 660/ [4, 392 ; 4, 710] [4, 578 ; 9, 120] 1/10, 000 Prange: 153.3
ωr = 56 10, 000 ωh = 1 Stern: 133.3
ωe = 56 BM: 133.7

Table 6.11: Simulation with 10,000 trials. Product code with parameters
[17669, 176,≥ 1984]2 (n1n2 = 17664) of a shortened BCH code with pa-
rameters [138, 22,≥ 31]2 and an RM code with parameters [128, 8, 64]2.

6.2.2.3 Product 3: Shortened BCH Code and BCH Code

This product code is very similar to ”Product 2”, but the RM code has been replaced
with a BCH code. Again, the length of the product code has been chosen such that
it matches the length of ”Concat 1”. The simulation results are shown in Table 6.12.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 43 10, 000/ [2, 943 ; 3, 167] [1, 712 ; 14, 626] 1/10, 000 Prange: 127.2
ωr = 43 10, 000 ωh = 0 Stern: 108.7
ωe = 43 BM: 109.2
ω = 44 9, 946/ [3, 048 ; 3, 296] [1, 772 ; 9, 090] 4/10, 000 Prange: 129.2
ωr = 44 10, 000 ωh = 0, 0, Stern: 110.6
ωe = 44 1, 17652 BM: 111.0

Table 6.12: Simulation with 10,000 trials. A product code with parameters
[17669, 184,≥ 1767]2 (n1n2 = 17653) of a shortened BCH code
with parameters [139, 23,≥ 31]2 and a BCH code with parameters
[127, 8,≥ 57]2.

Table 6.12 shows that the security level estimates for this code are even lower than
the security level estimates for ”Product 2” which makes sense as the first-order RM
code has a good minimum distance.

Table 6.12 shows that in 5 trials in total it was possible to decode v. In these 5 trials,
the weight of h was 0, 0, 0, 1, 17652 = n1n2 − 1, respectively. See Section 6.2.4 for a
further investigation in this.

68 6 A Better Choice of C?

6.2.2.4 Product 4: RM Code and Repetition Code

In this product code, the shortened BCH code has been replaced with a fourth-order
RM code which has been combined with a repetition code. Table 6.13 shows the
simulation results.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 62 9, 996/ [4, 904 ; 5, 276] [5, 044 ; 8, 758] 3/10, 000 Prange: 165.2
ωr = 62 10, 000 ωh = 16895, Stern: 144.5
ωe = 62 16895, 16895 BM: 145.0

Table 6.13: Simulation with 10,000 trials. A product code with parameters
[16901, 256, 1056]2 (n1n2 = 16896) of an RM(4, 9) code with param-
eters [512, 256, 32]2 and a repetition code with parameters [33, 1, 33]2.

Table 6.13 shows that the product code achieves very good security level estimates of
144.5 to 165.2 matching those of ”Concat 1” and simultaneously allowing for a key
size of 16901 vs. 17669 from ”Concat 1”. This is surprising given that ”Product 4”
has the lowest δ of all the designed product codes according to Table 6.8 and 6.2.

For ω = ωr = ωe = 62, 9, 996/10, 000 successful decodings of v′ was achieved. In order
to achieve 10, 000/10, 000 successful decodings of v′, one or more of the parameters
ω, ωr, and ωe should be lowered to 61.

In 3/10, 000 trials, it was possible to decode v, and in all 3 trials the weight of h
was 16895 = n1n2 − 1. The fact that the weight of h becomes exactly this value in
3/10, 000 cases shows lack of randomness in the random number generation in the
Sagemath implementation.

6.2.2.5 Product 5: RS Code and RS Code

This product code is different from the rest in the sense that it is over the field F28

and not over the binary field F2. Therefore, the parameters are also intepreted a bit
differently: Two codes, each of length n = 47 sounds quite short. The reason for such
short codes is that the length n = 47 · 47 = 2209 is in the extension field F28 which
means that the corresponding length in the base field F2 (which is also the field HQC
works in) is 8 · 2209 = 17672. The same holds for the dimension: The dimension of
the product code in the extension field is 4 ·4 = 16 which means that it is 8 ·16 = 128
in the base field. Unfortunately, the same does not completely hold for the minimum
distance. The minimum distance could be multiplied with 8 in the same manner if
and only if only blocks of length 8 of errors, i.e. 8 consecutive errors, occurred (in
coding theory, such blocks of errors are called burst errors), and also always took place

6.2 Code Design and Simulations 69

in the right places in the bit stream, i.e. that the blocks of errors never overlap the
blocks of 8 bits. Therefore, we only know that the minimum distance is somewhere
between 44 · 44 = 1936 and 8 · 1936 = 15, 488 and probably much closer to 1936 than
to 15,488. The simulation results are shown in Table 6.14.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 24 10, 000/ [1, 054 ; 1, 144] [1, 596 ; 9, 066] 0/10, 000 Prange: 89.1
ωr = 24 10, 000 Stern: 74.1
ωe = 24 BM: 74.5
ω = 25 9, 854/ [1, 141 ; 1, 235] [2, 203 ; 16, 493] 0/10, 000 Prange: 91.1
ωr = 25 10, 000 Stern: 75.8
ωe = 25 BM: 76.3

Table 6.14: Simulation with 10,000 trials. Product code with parameters
[17747, 128,≥ 1936]28 (n1n2 = 17672) of two RS codes, both with pa-
rameters [47, 4, 44]28 .

Table 6.14 shows that the security level estimates that could be achieved by using
this code are very low. They are the lowest seen so far.

6.2.2.6 Product 6: RM Code and RM Code

This product code is constructed using two different RM codes, a first-order RM(1, 6)
code and a second-order RM(2, 8) code. Due to the restrictions of possible parameter
sets for RM codes, it was not easy to find some very suitable parameters. The length
n is a bit smaller than the rest of the designed codes while the dimension k is quite
big for a security category I encryption scheme to be.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 39 9, 967/ [2, 479 ; 2, 683] [3, 464 ; 13, 797] 0/10, 000 Prange: 118.9
ωr = 39 10, 000 Stern: 101.0
ωe = 39 BM: 101.4
ω = 40 9, 749/ [2, 574 ; 2, 786] [3, 672 ; 8, 440] 0/10, 000 Prange: 120.9
ωr = 40 10, 000 Stern: 102.8
ωe = 40 BM: 103.3

Table 6.15: Simulation with 10,000 trials. Product code with parameters
[16421, 259, 2048]2 (n1n2 = 16384) of an RM(1, 6) code with param-
eters [64, 7, 32]2 and an RM(2, 8) with parameters [256, 37, 64]2.

70 6 A Better Choice of C?

Again, the security level estimates that would be achieved are too low compared to
Table 6.3.

6.2.2.7 Product 7: RM Code and RM Code

This product code is also constructed using two different RM codes, anRM(2, 7) code
and an RM(1, 8) code, and the aim of this code is to match the security category III.
As before, it was challenging to find a suitable set of parameters for a product code
of two different RM codes.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 83 9, 988/ [9, 149 ; 9, 725] [13, 433 ; 23, 389] 0/10, 000 Prange: 209.9
ωr = 83 10, 000 Stern: 187.6
ωe = 83 BM: 188.1
ω = 84 9, 942/ [9, 288 ; 9, 782] [11, 970 ; 16, 732] 0/10, 000 Prange: 211.9
ωr = 84 10, 000 Stern: 189.6
ωe = 84 BM: 190.0

Table 6.16: Simulation with 10,000 trials. Product code with parameters
[32771, 261, 4096]2 (n1n2 = 32768) of an RM(2, 7) code with parame-
ters [128, 29, 32]2 and an RM(1, 8) code with parameters [256, 9, 128]2.

As this product code aims to match security category III, the security level estimates
in Table 6.16 should be compared to the category III column in Table 6.3. The
estimate of Prange’s algorithm is 209.9 in Table 6.16 while it is 237 in Table 6.3,
hence the security level estimates in Table 6.16 are too low.

6.2.3 Single Codes
A natural question is why C is chosen as a combination of two codes instead of just
as one single code. This will be investigated in this Section.

In general, an advantage of a concatenated/product code is that longer codes can be
achieved while still being able to decode efficiently.

With the available code classes that are covered in this thesis, the single code can be
either an RS, RM, BCH, or repetition code. A really large RS code would require
an enormous field because of the bound n ≤ q − 1. An enormous field would imply
inefficient decoding as the computational complexity is increased, and therefore RS
code is not a suitable choice. The same holds for the BCH code as the BCH code
is decoded using the RS decoder. Furthermore, the repetition code is not suitable
either as it has k = 1. Hence, an RM code seems like the most promising choice.

6.2 Code Design and Simulations 71

Two different single codes have been designed, one for security category I and one for
security category III. The parameters are shown in Table 6.17.

Reference Category C δ

Single 1 I RM [16421, 470, 2048]2 (n1 = 16384) 1023
Single 2 III RM [32771, 121, 8192]2 (n1 = 32768) 4095

Table 6.17: Single codes.

However, note that the dimension of ”Single 1” is quite big compared to the preferred
value ≥ 128, while the dimension of ”Single 2” is way too small compared to the
preferred value ≥ 192 for security category III. This indicates that no suitable single
code among the code classes covered in this thesis could be found.

Due to time restrictions, only 5,000 trials per simulation have been run in this Section.

6.2.3.1 Single 1: RM Code

This code is an RM(r = 3, m = 14) code. As mentioned, the dimension is quite
big for a security category I code. A way to decrease the dimension while keeping
the same length would be to choose an RM(r = 2, m = 14) code with parameters
[16421, 106, 4096]2, but the dimension of this code is too small, and therefore the
already chosen parameters seem better. Table 6.18 shows the simulation results.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 33 5, 000/5, 000 [1, 869 ; 2, 011] [3, 371 ; 11, 829] 0/5, 000 Prange: 106.8
ωr = 33 Stern: 89.9
ωe = 33 BM: 90.4
ω = 34 4, 997/5, 000 [1, 976 ; 2, 128] [2, 850 ; 8, 402] 0/5, 000 Prange: 108.8
ωr = 34 Stern: 91.7
ωe = 34 BM: 92.2
ω = 35 4, 947/5, 000 [2, 067 ; 2, 249] [4, 302 ; 11, 533] 0/5, 000 Prange: 110.8
ωr = 35 Stern: 93.6
ωe = 35 BM: 94.0

Table 6.18: Simulation with 5,000 trials. A single RM(3, 14) code.

Table 6.18 shows that the security level estimates are much lower than the values in
Table 6.3, and hence this code is not suitable. The only designed code that this code
outperforms is the product code of two RS codes, ”Product 4”.

72 6 A Better Choice of C?

6.2.3.2 Single 2: RM Code

This code is an RM(r = 2, m = 15) code, and the aim is to match security category
III. As mentioned, the dimension is too small for a security category III code, as it
should preferrably be ≥ 192 to encapsulate an AES192-key. A way to increase the
dimension while keeping the same length would be to choose an RM(r = 3, m = 15)
code with parameters [32771, 576, 4096]2, but the dimension of this code is really big.
The simulation results are shown in Table 6.19.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level
estimates

ω = 80 4, 968/5, 000 [8, 740 ; 9, 154] [11, 448 ; 16, 702] 0/5, 000 Prange: 203.9
ωr = 80 Stern: 181.8
ωe = 80 BM: 182.3
ω = 81 4, 899/5, 000 [8, 867 ; 9, 351] [13, 053 ; 16, 781] 0/5, 000 Prange: 205.9
ωr = 81 Stern: 183.8
ωe = 81 BM: 184.2
ω = 82 4, 709/5, 000 [8, 948 ; 9, 444] [11, 638 ; 16, 724] 0/5, 000 Prange: 207.9
ωr = 82 Stern: 185.7
ωe = 82 BM: 186.2

Table 6.19: Simulation with 5,000 trials. A single RM(2, 15) code.

The security level estimates in Table 6.19 are too low compared to the category III
column in Table 6.3.

Hence, it was not possible to find a well performing single code for neither security
category I nor security category III. However, the analysis of the performance of using
a single code as C in HQC has definitely not been thoroughly investigated yet, and
therefore it is an interesting topic for future work.

6.2.4 Capability of Decoding v
Throughout this Chapter, many simulations have shown that it was possible to decode
v in a few trials. If v can be decoded, than half of the ciphertext ct = (u, v) can
be decoded without the secret key sk which means that the encryption scheme is
vulnerable. However, in the two Tables 6.5 and 6.9 showing simulation results with
the C code, it is not possible to decode v in any trial.

By further investigating this, it was revealed that the generation of h has been im-
plemented differently compared to the generation of h in the C code as mentioned in
the beginning of the Chapter. As a part of the further investigation, the following
Table 6.20 was created.

6.2 Code Design and Simulations 73

Weight min and max of ωh

ω = 66, ωr = ωe = 75 [8, 607 ; 9, 088]

Table 6.20: An addition to the ”Concat 1” Table 6.5 with simulation results com-
puted with the C code. This Table shows the minimum and maximum
weights of h denoted ωh across all 10,000 trials. It can be seen that ωh

is always around ⌊n
2 ⌋ = 8, 834.

Table 6.20 shows that across 10,000 trials with the C code, the minimum and maximum
weight of h are 8,607 and 9,088, respectively. Hence, the weight of h is always close
to ⌊n

2 ⌋ = 8, 834. In the C code, every bit of h has the same probability of be a 1, and
for a large n this means the ωh ≈ n

2 .

In the SageMath implementation, h is generated such that the weight of the vector
can be any value between 0 and n, all with the same probability. This is of course
unfortunate, but it can still be used to show new interesting aspects of HQC:

In Table 6.21, ”Product 1” is used for new simulations. In these simulations, the
weight of h has been fixed across all 5,000 trials per simulation. The different fixed
weights of h are marked with red in Table 6.21.

In Table 6.21, ωh has been fixed to values close to 0 and values close to n1n2 as these
values seem vulnerable according to all the simulations throughout the Chapter.

74 6 A Better Choice of C?

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level

ω = 67 5, 000/5, 000 [6, 747 ; 7, 123] [4, 128 ; 4, 400] 5, 000/5, 000 Prange: 196.6
ωr = 77 Stern: 174.8
ωe = 77 BM: 175.2
ωh = 0
ω = 67 5, 000/5, 000 [6, 779 ; 7, 149] [6, 621 ; 7, 155] 5, 000/5, 000 Prange: 196.6
ωr = 77 Stern: 174.8
ωe = 77 BM: 175.2
ωh = 1
ω = 67 5, 000/5, 000 [6, 763 ; 7, 195] [8, 382 ; 8, 990] 2, 537/5, 000 Prange: 196.6
ωr = 77 Stern: 174.8
ωe = 77 BM: 175.2
ωh = 2
ω = 67 5, 000/5, 000 [6, 759 ; 7, 157] [9, 491 ; 10, 149] 0/5, 000 Prange: 196.6
ωr = 77 Stern: 174.8
ωe = 77 BM: 175.2
ωh = 3
ω = 67 5, 000/5, 000 [6, 765 ; 7, 165] [14, 784 ; 15, 352] 0/5, 000 Prange: 196.6
ωr = 77 Stern: 174.8
ωe = 77 BM: 175.2
ωh =
n1n2−2
ω = 67 5, 000/5, 000 [6, 721 ; 7, 183] [16, 593 ; 17, 047] 0/5, 000 Prange: 196.6
ωr = 77 Stern: 174.8
ωe = 77 BM: 175.2
ωh =
n1n2−1
ω = 67 5, 000/5, 000 [6, 749 ; 7, 141] [19, 358 ; 19, 634] 0/5, 000 Prange: 196.6
ωr = 77 Stern: 174.8
ωe = 77 BM: 175.2
ωh =
n1n2

Table 6.21: Simulation with 5,000 trials. Product code with shortened BCH and
Repetition code, code parameters [766, 256, 121]2 and [31, 1, 31]2 as in
the submission. Note the wt(h) has been added.

Table 6.21 shows that for this choice of C, HQC is only vulnerable when ωh is close
to 0: For ωh = 0 and ωh = 1, it was possible to decode v in all 5, 000/5, 000 trials.
For ωh = 2, it was possible in approximately half of the trials. However, it was not
possible to decode v for ωh = {n1n2 − 2, n1n2 − 1, n1n2} for any trial.

Table 6.22 shows similar simulations for ”Product 4”, the best performing of the

6.2 Code Design and Simulations 75

designed codes.

Weight C.Decode(v′)
= m

min and max of
wt(xr2−r1y+e′)
(wt of error cor-
rupting v′)

min and max of
wt(sr2 + e′) (wt
of error corrupt-
ing v)

C.Decode(v)
= m

Security level

ω = 62 4, 999/5, 000 [4, 892 ; 5, 262] [3, 016 ; 3, 246] 5, 000/5, 000 Prange: 165.2
ωr = 62 Stern: 144.5
ωe = 62 BM: 145.0
ωh = 0
ω = 62 4, 999/5, 000 [4, 924 ; 5, 252] [4, 886 ; 5, 276] 4, 999/5, 000 Prange: 165.2
ωr = 62 Stern: 144.5
ωe = 62 BM: 145.0
ωh = 1
ω = 62 4, 999/5, 000 [4, 930 ; 5, 270] [6, 064 ; 6, 532] 0/5, 000 Prange: 165.2
ωr = 62 Stern: 144.5
ωe = 62 BM: 145.0
ωh = 2
ω = 62 4, 999/5, 000 [4, 924 ; 5, 310] [6, 066 ; 6, 584] 0/5, 000 Prange: 165.2
ωr = 62 Stern: 144.5
ωe = 62 BM: 145.0
ωh =
n1n2−2
ω = 62 5, 000/5, 000 [4, 898 ; 5, 268] [4, 876 ; 5, 276] 5, 000/5, 000 Prange: 165.2
ωr = 62 Stern: 144.5
ωe = 62 BM: 145.0
ωh =
n1n2−1
ω = 62 4, 999/5, 000 [4, 924 ; 5, 264] [3, 034 ; 3, 258] 5, 000/5, 000 Prange: 165.2
ωr = 62 Stern: 144.5
ωe = 62 BM: 145.0
ωh =
n1n2

Table 6.22: Simulation with 5,000 trials. Product code with RM code and Repeti-
tion code. Note the wt(h) has been added.

Table 6.22 shows that for this choice of C it is always possible to decode v for
ωh = {0, 1, n1n2 − 1, n1n2}. Note that the values in column 4, i.e. the minimum
and maximum values of the weight of the error corrupting v, decrease in the last
rows, while these values keep increasing in Table 6.21. This will be discussed in
Section 6.3.

76 6 A Better Choice of C?

6.3 Discussion

First of all, it turned out that designing new codes is a difficult task as there are many
details to take into account. Secondly, even though codes are carefully designed, they
can still perform poorly with regards to the current purpose. Many of the codes that
have been designed did not perform well as C in HQC. However, well performing
choices of C were also seen.

The designed concatenated codes showed the following: ”Concat 3”, a concatenated
code of an RS code and a BCH code, was outperformed by ”Concat 2”, a concatenated
code of an RS code and an RM code. The two codes had approximately the same set
of parameters, but in general first-order RM codes have very good minimum distance
which was also expressed by the fact that δ for ”Concat 2” was ≥ 1891 while it was
≥ 1830 for ”Concat 3”. Hence, theoretically it was expected that ”Concat 2” would
perform better than ”Concat 3” which also turned out to be the case. Both ”Concat
2” and ”Concat 3” were outperformed by ”Concat 1”, the original HQC concatenated
code of a shortened RS code and a duplicated RM code. Hence, it was not possible
to find a better concatenated code than the one used in the submission to NIST.

The best performing among the designed codes was ”Product 4”, a product code
of an RM(r = 4, m = 9) code and a repetition code of length n = 33. With this
choice of C, it was possible to achieve security level estimates that match the category
I security level estimates of the current version of HQC. Additionally, ”Product 4”
allows for an even smaller public key size, as the public key size of the current HQC
version is 2n = 2 · 17669 = 35338, while the public key size when using ”Product 4”
as C is 2n = 2 · 16901 = 33802. Hence, ”Product 4” seems like a promising candidate.

However, ”Product 4” still needs some further research and improvement as the pa-
rameters providing the security level estimates presented in Table 6.13 only resulted
in 9, 996/10, 000 successful decodings of v′. The code can be improved in different
ways. First of all, it should be investigated if 10, 000/10, 000 successful decodings of v′

can be achieved by decreasing some of the parameters ω, ωr, and ωe while keeping the
security level estimates sufficient for security category I. Another way of improving
the code could be to adjust the parameters, e.g. increase the length of the repetition
code by a few positions.

It is interesting to notice that according to Tables 6.4 and 6.8, ”Product 4” had the
absolute lowest δ among all designed codes. It was a general pattern that it was
difficult to predict the performance beforehand from the δ value, but of course it did
not help that most of the δ values were given as a lower bound instead of an exact
value. Table 6.4 showed that the lower bound of δ of e.g. ”Concat 2” was much bigger
than the lower bound of δ of ”Concat 1”, but ”Concat 1” was still a better choice of C.
Hence, simulations are necessary in order to know how different choices of C perform
in HQC.

6.3 Discussion 77

The actual error correction capability can be interpreted from column 3 in all the
tables. Consider e.g. the row with ω = 66 and ωr = ωe = 75 in Table 6.5 from
”Concat 1”. It was possible to successfully decode v′ in 10, 000/10, 000 trials, and the
minimum and maximum of wt(xr2 − r1y + e′) are [6, 087 ; 9, 109]. This means that
C can decode 9, 109 errors which is much greater than the δ ≥ 1350 derived from the
parameters of the code.

Another interesting thing is the following: Again, consider the row with ω = 66 and
ωr = ωe = 75 in Table 6.5, and note the overlap between the values in column 3 and
4, i.e. the minimum value in column 3 is smaller than the minimum value in column 4,
while the maximum value in column 3 is greater than the maximum value in column
4. This is interesting as v′ could be decoded in 10, 000/10, 000 trials, while v could
be decoded in 0/10, 000 trials. This shows that the decoding capability depends on
the distribution of errors: In the trial where the weight of the error corrupting v′ was
9,109, the weight of the error corrupting v in the same trial must have been lower.
At the same time, it was possible to decode v′, but not v which proves the claim that
the decoding capability depends on the distribution of errors.

The worst performing among the new codes was ”Product 5”, a product code over
the field F28 of two identical RS codes. This indicates that binary product codes
are potentially better than those designed using a larger field, but further research is
necessary in order to finally conclude it.

As mentioned in Chapter 3, concatenated codes usually have better parameters than
product codes in terms of minimum distance. Despite this the best performing code
among the designed codes turned out to be a product code. This can potentially
be explained by the fact that it was easier to design and test more varied product
codes than concatenated codes. In order to design more concatenated codes, more
non-binary codes are needed. Hence, for future research it is interesting to investigate
other non-binary codes. It is also interesting to design codes of the improved version
of the concatenated code called generalized concatenated codes [Wac+, p. 110].

In Section 6.2.3, the fact that C should be chosen as a product or concatenated code
was challenged. Two different single codes were designed and simulated. However,
the design of single codes as well as the simulations showed that no well performing
single code could be found: The best possible set of parameters were not suitable for
HQC, and the security level estimates that could be achieved were not acceptable
either. However, this can still be researched more.

Finally, the comparison between the two Tables 6.9 and 6.10 allows for a comparison
between the C code submitted to NIST and the SageMath code implemented in this
project. The comparison shows that the SageMath code is comparable to the C
code, particularly with regards to the decoding capability of v′ and the weight of the
error corrupting v′. However, as already mentioned h is generated differently in the

78 6 A Better Choice of C?

SageMath implementation compared to the C code: A h generated with the C code has
weight around n

2 with very high probability while a h generated with the SageMath
implementation can have any weight between 0 and n with equal probability. In
Section 6.2.4, it was shown that if the weight of h is either very close to 0 or very
close to n1n2, then v can be decoded with high probability (depending on the choice
of C), and hence the encryption scheme is not secure. In conclusion: It does not
seem likely that v can be decoded when the C code is used, but if an attacker can
compromise the encryption scheme and force h to have weight either very close to 0
or very close to n1n2, then she can attack the encryption scheme, e.g. through fault
attacks.

CHAPTER7
Conclusion

First of all, it was possible to implement different error-correcting codes as well as
product codes, concatenated codes, and the HQC encryption scheme in SageMath.
The SageMath implementation was comparable to the C implementation from the
submission to NIST’s standardization process, particularly with regards to the decod-
ing capability. Secondly, it was possible to design many new codes, both product
codes, concatenated codes, and a couple of single codes, using different combinations
of the error-correcting codes covered in this thesis.

Simulations with 10,000 trials per simulation were run on HPC cluster hardware. Of
the designed codes, the best performing was a product code of an RM(r = 4, m = 9)
code and a repetition code of length n = 33. These parameters were constructed to
match security category I among the 5 categories that NIST has defined. With this
choice of C, it is possible to achieve security level estimates that match the estimates
of the current best version of HQC where C is chosen as a concatenated code of
a shortened Reed-Solomon code and a duplicated Reed-Muller code. Additionally,
this new product code allows for an even smaller public key size: The concatenated
code that is currently used in HQC has n = 17669 which means a public key size
of 2n = 2 · 17669 = 35338 while this new product code has n = 16901 implying a
public key size of 2n = 2 · 16901 = 33802. Hence, the new product code seems like a
promising candidate for an improved choice of C in HQC.

Interestingly, the theoretical decoding capability of the new product code, i.e. the
number of errors that the code was expected to at least be able to correct, did not seem
promising. Theoretically, the code was expected to be among the worst performing
of the designed codes. It was a general pattern throughout all the experiments that
the theoretical decoding capability turned out to not be useful as a prediction for the
simulation results. Hence, it can be concluded that simulations are necessary in order
to conclude how different choices of C perform in HQC.

The simulations showed another interesting fact: If the n-bit vector h from the public
key pk = (h, s) is chosen with Hamming weight very close to either 0 or n, then the
n-bit vector v from the ciphertext ct = (u, v), can be decrypted without using the
secret key sk which would mean that the encryption scheme was not secure. With the
C implementation of HQC submitted to NIST’s standardization process, it is really

80 7 Conclusion

unlikely, bordering impossible, that h could randomly get such a weight. However, if
an attacker can compromise the encryption scheme and force the Hamming weight of
h to be either very close to 0 or to n, then she can attack the encryption scheme, e.g.
by fault attacks.

As HQC is a quite new cryptosystem and hence not yet thoroughly researched, it
makes sense that the old Classic McEliece from 1978 performs better in the stan-
dardization process. However, Classic McEliece suffers from large key sizes, and on
this parameter HQC performs much better. Perhaps, HQC can compete with Classic
McEliece in the future.

7.1 Future Work
Some topics for future work are:

• Further research in the product code of an RM(r = 4, m = 9) code and a
repetition code of length n = 33. Investigate whether this code is actually an
improved choice of C. Furthermore, design set of parameters for this product
code for security category III and V as well.

• Implement and design codes of other classes of error-correcting codes, e.g. Goppa
codes which is another subfield subcode of RS codes.

• Design generalized concatenated codes, an improved version of the concatenated
code used in this thesis.

• Improve the implementation. Implement better decoders, e.g. list decoders. If
the implementation is improved a lot, it would be interesting to contribute to
the Sagemath community.

• Further investigation in single codes as C.

Bibliography
[20221] PQCrypto 2021. PQCrypto conference 2021: Live Session - Day 2. July

2021. url: https://www.youtube.com/watch?v=FdOKWktBLhU.
[Agu+21a] C. Aguilar Melchor et al. “Hamming Quasi-Cyclic (HQC), Updated ver-

sion 06/06/2021”. In: (2021). url: https://pqc-hqc.org/doc/hqc-
specification_2021-06-06.pdf.

[Agu+21b] C. Aguilar Melchor et al. “HQC Implementation”. In: (2021). Last visited
on 17th of January 2022. url: https://pqc-hqc.org/implementation.
html.

[BE21] Emanuele Bellini and Andre Esser. Syndrome Decoding Estimator. 2021.
url: https://github.com/Crypto-TII/syndrome_decoding_estimator.

[BM18] Leif Both and Alexander May. “Decoding Linear Codes with High Error
Rate and Its Impact for LPN Security”. en. In: Post-Quantum Cryptog-
raphy. Edited by Tanja Lange and Rainer Steinwandt. Volume 10786.
Series Title: Lecture Notes in Computer Science. Cham: Springer In-
ternational Publishing, 2018, pages 25–46. isbn: 978-3-319-79062-6 978-
3-319-79063-3. doi: 10 . 1007 / 978 - 3 - 319 - 79063 - 3 _ 2. url: http :
//link.springer.com/10.1007/978-3-319-79063-3_2.

[DTU21] DTU Computing Center. DTU Computing Center resources. 2021. doi:
10.48714/DTU.HPC.0001. url: https://doi.org/10.48714/DTU.HPC.
0001.

[Dum96] I. Dumer. “Suboptimal decoding of linear codes: partition technique”. In:
IEEE Transactions on Information Theory 42.6 (November 1996). Con-
ference Name: IEEE Transactions on Information Theory, pages 1971–
1986. issn: 1557-9654. doi: 10.1109/18.556688.

[EB21a] Andre Esser and Emanuele Bellini. Syndrome Decoding Estimator. Tech-
nical report 1243. 2021. url: https://eprint.iacr.org/2021/1243.

[EB21b] Andre Esser and Emanuele Bellini. “Syndrome Decoding Estimator”. In:
IACR Cryptol. ePrint Arch. 2021 (2021), page 1243.

[IBMa] IBM. “Grover’s algorithm”. In: (). Last visited on 17th of January 2022.
url: https://quantum-computing.ibm.com/composer/docs/iqx/
guide/grovers-algorithm.

https://www.youtube.com/watch?v=FdOKWktBLhU
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/implementation.html
https://pqc-hqc.org/implementation.html
https://github.com/Crypto-TII/syndrome_decoding_estimator
https://doi.org/10.1007/978-3-319-79063-3_2
http://link.springer.com/10.1007/978-3-319-79063-3_2
http://link.springer.com/10.1007/978-3-319-79063-3_2
https://doi.org/10.48714/DTU.HPC.0001
https://doi.org/10.48714/DTU.HPC.0001
https://doi.org/10.48714/DTU.HPC.0001
https://doi.org/10.1109/18.556688
https://eprint.iacr.org/2021/1243
https://quantum-computing.ibm.com/composer/docs/iqx/guide/grovers-algorithm
https://quantum-computing.ibm.com/composer/docs/iqx/guide/grovers-algorithm

82 Bibliography

[IBMb] IBM. “Shor’s algorithm”. In: (). Last visited on 17th of January 2022.
url: https://quantum-computing.ibm.com/composer/docs/iqx/
guide/shors-algorithm.

[Knu18a] L.R. Knudsen. Advanced Cryptology - How to Crack It 2. 1st edition.
Polyteknisk Forlag, 2018.

[Knu18b] L.R. Knudsen. Cryptology - How to Crack It. 1st edition. Polyteknisk
Forlag, 2018.

[LB88] P. J. Lee and E. F. Brickell. “An Observation on the Security of McEliece’s
Public-Key Cryptosystem”. en. In: Advances in Cryptology — EURO-
CRYPT ’88. Edited by D. Barstow et al. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 1988, pages 275–280. isbn: 978-3-
540-45961-3. doi: 10.1007/3-540-45961-8_25.

[MO15] Alexander May and Ilya Ozerov. “On Computing Nearest Neighbors
with Applications to Decoding of Binary Linear Codes”. In: EURO-
CRYPT (1). Springer, 2015, pages 203–228. doi: 10.1007/978-3-662-
46800-5_9. url: https://www.iacr.org/archive/eurocrypt2015/
90560136/90560136.pdf.

[MS77] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting
Codes. North-Holland Publishing Company, 1977.

[NIS21] NIST. “Post-Quantum Cryptography - Past Events”. In: (2021). Last vis-
ited on 17th of January 2022. url: https://csrc.nist.gov/Projects/
post-quantum-cryptography/events.

[Pra62] E. Prange. “The use of information sets in decoding cyclic codes”. In: IRE
Transactions on Information Theory 8.5 (September 1962). Conference
Name: IRE Transactions on Information Theory, pages 5–9. issn: 2168-
2712. doi: 10.1109/TIT.1962.1057777.

[RB20] J. Rosenkilde and P. Beelen. Lecture notes for course 01405 Algebraic
Error-Correcting Codes. Technical University of Denmark, 2020.

[Rot06] R. Roth. Introduction to Coding Theory. Cambridge University Press,
2006.

[Sch+20] T. Schamberger et al. “A Power Side-Channel Attack on the CCA2-
Secure HQC KEM”. In: (July 2020).

[Ste89] Jacques Stern. “A method for finding codewords of small weight”. en. In:
Coding Theory and Applications. Edited by Gérard Cohen and Jacques
Wolfmann. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
1989, pages 106–113. isbn: 978-3-540-46726-7. doi: 10.1007/BFb0019850.

[Wac+] A. Wachter-Zeh et al. Lecture Notes for Channel Coding. Summer 2021.
Technical University of Munich.

[WP21] A. Wachter-Zeh and S. Puchinger. “Tutorial ”Code-Based Cryptogra-
phy””. In: IEEE Information Theory Workshop 2021 (2021).

https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm
https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://www.iacr.org/archive/eurocrypt2015/90560136/90560136.pdf
https://www.iacr.org/archive/eurocrypt2015/90560136/90560136.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/events
https://csrc.nist.gov/Projects/post-quantum-cryptography/events
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.1007/BFb0019850

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Cryptography
	2.1 Basic Encryption Models
	2.2 Post-Quantum Cryptography
	2.3 Public-Key Encryption Scheme (PKE)
	2.4 PKE, KEM, and Signature Schemes

	3 Coding Theory
	3.1 Prerequisites
	3.2 Introduction to Coding Theory
	3.3 Linear Block Codes
	3.4 Reed-Solomon Codes
	3.5 BCH Codes
	3.6 Binary Repetition Codes
	3.7 Reed-Muller Codes
	3.8 Shortening
	3.9 Combining Codes

	4 The HQC Public-Key Encryption Scheme
	4.1 Prerequisites
	4.2 The Public-key Encryption (PKE) Version
	4.3 Correctness
	4.4 Security of HQC
	4.5 Known Attacks
	4.6 Advantages and Disadvantages

	5 Implementation
	5.1 Implementation of Error-Correcting Codes
	5.2 Implementation of Derived Codes
	5.3 Implementation of HQC

	6 A Better Choice of C?
	6.1 A New Choice of C
	6.2 Code Design and Simulations
	6.3 Discussion

	7 Conclusion
	7.1 Future Work

	Bibliography

