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Summary
Prime numbers form the fundamental building blocks for all integers. If an integer is not prime, then
it is a product of primes. However, this is not enough knowledge when big integers should be classified
as either primes or composite numbers.

In this project, different primality tests are investigated. When people refers to primality tests, they
talk exactly about the problem of determining whether an integer is prime or composite.

Two probabilistic primality tests as well as a deterministic primality test will be investigated. The focus
throughout the project is to prove the correctness of the tests, and afterwards, as a proof of concept,
the primality tests are implemented in Python using SageMath. To underline the thread troughout
the thesis, the implementations will be compared to the analytical complexity analysis of the primality
tests.
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CHAPTER 1
Introduction

Prime numbers form the fundamental building blocks for all integers. If a positive integer is not a
prime, then it is a product of primes. Similarly, if a positive integer is a product of primes, then it can
not be a prime itself. However, when we want to distinguish composite numbers from primes, this fact
is not at all enough, because how do you check whether a big positive integer is a product of primes or
not? When people refers to primality tests, they talk exactly about the problem of determining whether
an integer is prime or not. The most simple primality test is trial division: If an integer n should be
tested for primality by trial division, then one simply tests whether each prime ≤

√
n divides n or not.

If none of them do, then n must be prime (as explained, if an integer is not prime, then it has at least
two prime factors. If both of them were greater than

√
n, then the product of them p · q ≥

√
n
√

n = n,
contradicting the fact that the product should be equal to n). This primality test is indeed very slow,
and fortunately better methods are known.

In these days, many primality tests are known, but the different tests are far from being equally efficient.
A central result in algebra is Fermat’s little theorem which states that an−1 ≡ 1 mod n for a prime n

and any a ∈ Z for which gcd(a, n) = 1. This theorem is used in some primality tests, and in this project
two tests using Fermat’s little theorem will be examined: The Fermat test and the Miller-Rabin test.
These two tests turn out to be probabilistic test in the sense that if they judges n as being a prime,
then the answer is always correct while if the tests reply ”composite” then the answer is only correct
with probability ≥ 1

2 . In contrast to these probabilistic tests, there are also so-called deterministic tests
which always return the correct answer. In this project, a deterministic primality test will be examined
as well: the AKS primality test. The AKS primality test was found in 2002 by three Indian computer
scientists, Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, and the test turns out to be not only a
deterministic primality test, but a polynomial time deterministic primality test which will be examined
in this project.

The AKS primality test was an elusive goal of researchers in the algorithmic number theory world[5,
p. 4]. An interesting detail about the test is that it was constructed less than 20 years ago. Since the
first announcement of the test in 2002, many ideas and improvements of the test have been coming up,
and they still are[5, p. 6].

The reader might wonder: Why do we even care about which numbers are primes and which are not?
The answer to this question could be to explain one of todays really important usages of prime numbers
- the RSA cryptosystem: In 1982, Ron Rivest, Adi Shamir, and Len Adleman constructed a public
key cryptosystem which is an important part of computer security today[5, p. 14]. The idea can be
explained in the following way: Bob takes two large primes p and q, p < q, computes their product
n = pq and then determines two integers d and e such that

de ≡ 1 (mod (p− 1)(q − 1)).

The public key which is then used by Alice then consists of n and the encryption key e. Bob keeps
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the decryption key d as well as the primes p and q secret. Suppose that the message which should be
sent between Alice and Bob is an integer between 1 and n− 1 (note that an alphabetic message m can
be translated into numbers by writing ”01” as ”A”, ”02” as ”B”, and so on). In order to encrypt the
message m, Alice computes

r := Φ(m) ≡ me (mod n),

with Φ(m) ∈ {1, . . . , n− 1}. In order to decrypt, Bob computes

Ψ(r) := rd (mod n),

with Ψ(r) ∈ {1, . . . , n−1}. By using Fermat’s little theorem for the primes p and q, one can verify that

mde ≡ m (mod n),

which implies that Ψ = Φ−1. If a third person, say Charlie, knows n and is able to factor n, then he
can determine Ψ easily which means the security of the RSA cryptosystem depends on how hard it is
to factor n.

While there exists efficient primality tests today, the known primes are getting larger and larger, thus
creating the need for more efficient primality tests in order to continue finding ever increasing primes.



CHAPTER 2
Preliminaries

An essential preliminary is the definition of prime numbers, so this is where this section starts:

2.1 Prime numbers
An integer N ∈ N≥2 is a prime number if N |ab implies that N |a or N |b, or, equivalently, if ab = N

implies that a ∈ {1,−1} or b ∈ {1,−1}, for all a, b ∈ Z. The other integers N ≥ 2 are called composite.
Prime numbers are the foundation of integers as all integers can be represented using primes according
to the following theorem:

Theorem 2.1 (Fundamental theorem of arithmetic). [4, p. 518] Every positive integer can be written
as a product of positive prime factors. This is unique up to the order of the factors. In other words, Z
is a Unique Factorization Domain.

2.1.1 Infinitely many primes
Theorem 2.2. There are infinitely many primes.

Proof. Assume the opposite - that there are only a finite number of primes. These primes are now
denoted p1, p2, . . . , pn. Let q be defined as q = 1 +

∏n
i=1 pi. It is clear that q is not equal to any of

the primes p1, . . . , pn. According to the Fundamental theorem of arithmetic which is mentioned earlier,
an integer is either a prime or a product of some primes. It is clearly seen that none of the primes
p1, . . . , pn divide q, and therefore q must be a prime itself. This fact contradicts the assumption that
p1, . . . , pn are all the primes.

2.2 Groups
An abstract structure called a group is now defined. A group involves elements from a set G and a
group operation ·. The full definition of a group is shown in Definition 2.2.1.

Definition 2.2.1. [1, p. 13] A pair (G, ·) consisting of a set G and a group operation · : G×G→ G is
called a group if the following three properties (usually called groups axioms) are satisfied:

• for any elements f, g, h ∈ G we have f · (g · h) = (f · g) · h (one says that the group operation is
associative),

• there exists an element e ∈ G, called the identity element of G, such that e · f = f and f · e = f

for any f ∈ G,

• for any f ∈ G there exists an element g ∈ G such that f · g = e and g · f = e (the element g is
called the inverse of f and will be denoted by f−1).
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An example of a group is the group (Z/NZ)∗, which will be used a lot throughout the project. It is
defined in the following way:

Theorem 2.3. [4, p. 518] The group

(Z/NZ)∗ = {a mod N ∈ Z/NZ : gcd(a, N) = 1}

is the multiplicative group of units in Z/NZ.

Proof. Another way of defining (Z/NZ)∗ is the following:

(Z/NZ)∗ = {u ∈ Z/NZ|∃v ∈ Z/NZ : u · v = 1 mod N} (2.1)

This definition is more straightforward when proving that (Z/NZ)∗ is a group. It is now shown that
(Z/NZ)∗ satisfies the three properties in Definition 2.2.1:

• Take two elements u1, u2 ∈ (Z/NZ)∗. According to the definition in equation (2.1), take the two
elements v1, v2 ∈ (Z/NZ)∗ such that they are the multiplicative inverses of u1 and u2 respectively.
Then the following can be written:

u1 · u2 · v2 · v1 = u1 · 1 · v1 = 1.

Hence, u1u2 ∈ (Z/NZ)∗, and v1v2 is the inverse of u1u2. This shows that the first property is
satisfied.

• There exists indeed the identity element, 1, in (Z/NZ)∗.

• The v in equation (2.1) is the inverse of u, hence there exists the inverse of any element in (Z/NZ)∗.

The three properties in definition 2.2.1 are satisfied, hence (Z/NZ)∗ is a group.

In continuation of the definition of the group (Z/NZ)∗ follows the following definition:

Definition 2.2.2. [4, p. 75] Euler’s totient function ϕ is defined as

ϕ(N) = |(Z/NZ)∗|.

2.3 Fermat’s little theorem
Fermat’s little Theorem plays a big role in the probabilistic Fermat test which is presented in Chapter 3.
Therefore, the theorem is now presented, and it is proved why it is correct. The theorem follows directly
from Euler’s theorem, hence Euler’s theorem is first presented and proved. The only thing necessary in
order to prove the correctness of Euler’s theorem is the following Proposition 2.6. However, in order to
show the correctness of this Proposition, the two following results, including Lagrange’s theorem, are
necessary. Lagrange’s theorem will be a central fact of other parts of the thesis as well:

Lagrange’s theorem is a fundamental tool in algebra, and it is therefore stated without proof:

Theorem 2.4 (Lagrange’s theorem). [6, p. 63-64] If H ⊆ G is a subgroup of a finite group G, then

|G| = |G/H||H|.

The order of a subgroup divides the order of the group.
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Since the following Lemma 2.5 is not the main interest in this section, it is stated without proof as well:

Lemma 2.5. [1, p. 18] Let (G, ·) be a group, and let g ∈ G be a group element. Then the order of the
group ⟨g⟩ is the same as the order of the element g.

The Proposition which plays the main role in the proof of Euler’s theorem is now presented and proved:

Proposition 2.6. Let (G, ·) be a finite group, and let g ∈ G be a group element. Then ord(g) divides
|G|. In particular, g|G| = e for any group element g ∈ G.

Proof. The first part of the Proposition follows from Lemma 2.5 and from Lagrange’s Theorem, Theorem
2.4. To show that g|G| = e for any g ∈ G, note that the first part of the Proposition implies that
|G| = ord(g)n for some natural number n. But then

g|G| = gord(g)n = (gord(g))n = en = e,

for any g ∈ G.

The main theorem which is due to Euler (1707-83) is now stated and proved:

Theorem 2.7 (Euler’s Theorem). [1, p. 28] Let d, n ∈ Z be two integers and assume that gcd(d, n) = 1.
Then dϕ(n) ≡ 1 mod n, where ϕ denotes Euler’s totient function defined in Definition 2.2.2.

Proof. Euler’s Theorem follows by applying Proposition 2.6 to the group ((Z/nZ)∗, ·n).

Fermat’s little theorem which, as the name says, is due to Fermat (1601-65), is now stated as a Corollary
of Euler’s theorem, Theorem 2.7:

Corollary 2.7.1 (Fermat’s little theorem). If p ∈ N is prime and a ∈ Z, then ap ≡ a mod p and, if
p ∤ a, then ap−1 ≡ 1 mod p.

Proof. The Corollary follows directly from Euler’s theorem, Theorem 2.7, since ϕ(p) = p−1 for a prime
p.[6, p. 26]

2.4 Introduction to complexity analysis
When only an asymptotic upper bound is considered, the O-notation, Definition 2.4.1, is used.

Definition 2.4.1. For a given function g(n), the notation O(g(n)) denotes the set of functions:

O(g(n)) = {f(n) : there exist positive constants c and n0, such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

Using O-notation, the running time of an algorithm is merely described by inspecting the overall struc-
ture of the algorithm.[2, p. 47]

In some situations, the O still includes too much information. In such cases, the Õ-notation can be used:
The Õ-notation swallows log-factors, which means for example that O(n log n log log n), the complexity
of multiplying two integers of length n fast, corresponds to Õ(n).[4, p. 721]

The following Definition will also be used in the sections with complexity analysis:
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Definition 2.4.2. [4, p. 244] Let R be a ring (commutative, with 1). A function

M : N>0 → R>0

is called a multiplication time for R[x], if polynomials in R[x] of degree less than n can be multiplied
using at most M(n) operations in R. Similarly, a function M as above is called a multiplication time
for Z, if two integers of length n can be multiplied using at most M(n) word operations.

In the sections with complexity analysis, let lg n := log2 n.

2.5 The square-and-multiply algorithm
As a preparation for the presentation of the Fermat prime number test in Chapter 3, it is interesting to
look at the time complexity of computing xy mod z. The straightforward way of computing this is to
multiply x by itself y times and do a modular reduction modulo z every time. Let k denote the number
of bits in y. Then this computation has time complexity

O(yk2) = O(2kk2),

which is exponential in k. It is possible to do better than that. Computing the sequence

x, x2, x3, x4, x5, x6, x7, x8

in order to compute x8 requires seven multiplications, whereas the sequence

x, x2, x4, x8

requires only three squarings. This is the idea of the square-and-multiply algorithm for computing xy

mod z - to do a faster computation by using squarings instead of multiplications. The first step in the
algorithm is to write the exponent y in binary representation

y = 2k−1yk−1 + · · ·+ 22y2 + 2y1 + y0 yi ∈ {0, 1}.

Then, xy can be expressed as

xy = x2k−1yk−1+···+22y2+2y1+y0

= ((((((((xyk−1)2)xyk−2)2) . . . )2)xy1)2)xy0 mod z

If yk−1 = 1 according to the binary representation of y, w = x2 is computed and then reduced modulo
z. If yk−2 = 1, x is multiplied onto w, and the result is squared and then reduced modulo z. If yk−2 = 0,
w is just squared and then reduced modulo z. This method can be expressed as pseudo-code in the
following way:

Algorithm 1: Square-and-multiply algorithm
input : x ∈ R, where R is a ring with 1, and binary representation of y ∈ N>0, with k bits
output : xy ∈ R

1 set w := 1
2 for i := k − 1 to 0 do
3 w := w2

4 if yi = 1 then
5 w := w · x
6 end
7 end
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Theorem 2.8. The running time of the square-and-multiply algorithm is O(M(k)k).

Proof. Since k denotes the number of bits in the exponent y, then

y ≤ 2k ⇔ lg y ≤ k.

Recall that lg(y) = log2(y). The Algorithm uses ⌊lg(y)⌋ squarings in line 3 and ≤ ⌊lg(y)⌋ multiplications
in line 5. Hence, the total cost is at most 2 lg(y) multiplications. Since there are ≤ k bits in y, it can
be concluded that the running time of the square-and-multiply algorithm, Algorithm 1 is O(M(k)k),
where M(k) denotes the multiplication time, by Definition 2.4.2.[4, p. 75]

2.6 Some general remarks
The results in this section are fundamental algebraic results, and they are therefore stated without proof.

The following Theorem 2.9 will be used when proving the correctness of one of the probabilistic tests:

Theorem 2.9. [4, p. 518] If the prime factorization of an integer n is

n = pe1
1 · · · per

r ,

where p1, . . . , pr are distinct positive primes and e1, . . . , er are positive integers, then the Chinese Re-
mainder Theorem says that

ZN
∼= Zp

e1
1
× · · · × Zper

r
,

and that

Z∗
N
∼= Z∗

p
e1
1
× · · · × Z∗

per
r

.

Theorem 2.10. [4, p. 47, 54] The greatest common divisor of to integers f, g can be calculated by
using the Euclidean Algorithm. Assume that the integers f, g both have k bits. If M(k) = k2, where
M denotes the multiplication time as described in Section 2.4, then the running time of the Euclidean
Algorithm is O(k2). If M(k) = O(k2) (which means < k2), then the running time of the Euclidean
Algorithm is O(M(k) · log k).

Definition 2.6.1. [1, p. 14] Let g, r ∈ N. Then the smallest natural number n (if it exists) such that
gn ≡ 1 mod r is called the order of g modulo r and will in the following be denoted ordr(g) = n.

Corollary 2.10.1. [6, p. 13] Suppose that a | bc where a, b, c ∈ Z and gcd(a, b) = 1. Then a | c.

Definition 2.6.2. [6, p. 145] A non-zero polynomial is called monic if its leading coefficient is 1. The
leading coefficient of a polynomial is the coefficient an where the polynomial f ∈ R[x] is written as

f(x) = a0 + a1x + a2x2 + · · ·+ anxn.
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CHAPTER 3
Probabilistic Primality Tests

3.1 Probabilistic tests
A straightforward way to generate a k-bit prime is the following: Choose a random k-bit odd integer,
m, and test whether any prime less than m is a divisor of m. If this is not the case, m must be a prime
itself according to the Fundamental theorem of arithmetic presented in the introduction. If m is not a
prime, then m can be factored into some factors, say a and b:

m = a · b.

If both a and b are greater than
√

m, then a · b must be greater than m, which means that at least one
factor must be less than or equal to

√
m. Therefore, it is actually only necessary to test prime divisors

less than or equal to
√

m. If m is not a prime, then another random integer m is chosen, and the test
is repeated. This method is called trial division, and the method can be expressed as pseudo-code in
the following way:

Algorithm 2: Primality test by trial division
input : integer m

1 for all primes p ≤
√

m do
2 if p | m then
3 print ”m is not a prime” and stop
4 end
5 end
6 print ”m is a prime” and stop

One problem is that trial division is very slow for big integers. In the worst case, all primes up to
the square-root of m should be tested which is quite slow as the square-root of a k-bit integer is a
k/2-bit integer. Hence, in the worst case, ≈ 2k/2 trials are needed. Fortunately, other methods that
are faster than trial division exist, and in the rest of this section a probabilistic prime number test will
be examined. The fact that it is a probabilistic test means that it returns an integer which is a prime
with a certain probability p. To give a brief insight in types of algorithms, they are here classified into
three groups of which the first and second group are probabilistic tests[3, p. 3-4]:

• Monte Carlo algorithms: Given an input, the output is correct with probability ≥ 1
2 . The

error probability is decreased by repeating the algorithm on the same input.

• The category including the Fermat test: On most input, it will behave as a Monte Carlo
algorithm, but on some (small) subset of inputs, it will (almost) always answer incorrectly.

• Las Vegas algorithms: Given an input, the algorithm never lies. The output is either a correct
answer or an honest report of failure. However, sometimes the algorithm should be run many
times, before a correct answer is found. More specifically, a Las Vegas algorithm succeeds with
probability ≥ 1

2 , so it will usually quickly return the correct answer.



10 3 Probabilistic Primality Tests

3.2 Fermat witness and liar
The first probabilistic test which is considered is the Fermat test which is based on Fermat’s little
theorem, Corollary 2.7.1. The algorithm can be seen in Algorithm 3. One step in the algorithm is to
choose an a ∈ Z/NZ\{0, 1, N − 1}, uniformly at random, where N is the integer which is being tested
for primality. This a is classified into one of two groups: Either a is called a Fermat witness to the
compositeness of N , or it is called a Fermat liar for N . If any Fermat witness is known, then it is
completely sure that N is composite[4, p. 519-520]. In order to understand how a is classified as either
a Fermat witness or a Fermat liar, the following subset of (Z/NZ)∗ is considered:

LN = {u ∈ (Z/NZ)∗ : uN−1 = 1}.

By Theorem 2.3, (Z/NZ)∗ is indeed a group, more precisely it is the multiplicative group of units in
Z/NZ.

Lemma 3.1. LN is a subgroup of (Z/NZ)∗ which means that LN is a group itself.

Proof. The Lemma is proved by showing that LN satisfies the three properties in Definition 2.2.1:

• Take two elements u1, u2 ∈ LN . Then:

(u1u2)N−1 = uN−1
1 uN−1

2 = 1 · 1 = 1.

Hence, u1u2 ∈ LN , and this shows that the first property is satisfied.

• There exists indeed the identity element, 1, in LN .

• In order to determine whether the inverses exist, take a u ∈ LN and a v ∈ (Z/NZ)∗ such that
u · v = 1. The question is then whether v is an element in LN or not, i.e. whether vN−1 = 1 or
not. By what is known so far, the following can be written:

uN−1 = 1
⇒ uN−1vN−1 = vN−1

⇒ (uv)N−1 = 1 = vN−1

Hence, vN−1 = 1, which shows that the inverse of any element in LN is also contained in LN .

The three properties are satisfied which justifies that LN is a group.

By Fermat’s little theorem, Corollary 2.7.1, then LN = (Z/NZ)∗ if N is a prime. If LN ̸= (Z/NZ)∗,
then |LN | ≤ 1

2 |(Z/NZ)∗|, since the size of a finite group is an integer multiple of the size of any of its
subgroups, by Lagrange’s theorem, Theorem 2.4. The probability that the a chosen in the algorithm,
taken modulo N , is in LN can be expressed in the following way: It is the cardinality of LN divided by
the cardinality of (Z/NZ)∗ which is then given as

|LN |
|(Z/NZ)∗|

≤ 1
2

,

if LN ̸= (Z/NZ)∗. If the chosen a, modulo N , is in (Z/NZ)∗ \LN , then such an a, and also its residue
class a mod N , is called a Fermat witness to the compositeness of N . If a mod N ∈ LN , then a and
also a mod N is a Fermat liar for N .
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3.3 The Fermat test
By definition, 2 is a prime number which implies that any even number > 2 can not be prime. If there
existed an even prime number p ≥ 2, then the prime number 2 would divide p, and hence p would
contradict the definition of prime numbers. Therefore, any primality test clearly only focuses on testing
odd numbers for primality.

The Fermat primality test is stated as pseudo-code below:

Algorithm 3: Fermat test
input : An odd integer N ≥ 5
output : Either ”composite” or ”possibly prime”

1 choose a ∈ Z/NZ\{0, 1, N − 1} uniformly at random
2 call the repeated squaring algorithm 2 to compute b = aN−1 mod N

3 if b ̸= 1 then
4 return ”composite” else
5 return ”possibly prime”
6 end
7 end

Theorem 3.2. If Algorithm 3 is given a prime N as input, then the Algorithm returns ”possibly
prime”. If the Algorithm is given a composite number N as input, then the Algorithm recognizes the
compositeness of N with probability ≥ 1

2 . If it does not recognize the compositeness, then it returns
”possibly prime”.

Proof. The test takes as input an odd integer N ≥ 5 and outputs either ”composite” or ”possibly prime”.
If the a chosen at random in step 1 is a Fermat witness which means that a mod N ∈ (Z/NZ)∗ \ LN

and b ̸= 1, then the compositeness of N is proved, and the Algorithm correctly returns ”composite”. If
the randomly chosen a is a Fermat liar which means that a mod N ∈ LN , then it is neither proved nor
rejected that N is a prime. If LN = (Z/NZ)∗, then N is a prime according to Fermat’s little theorem,
but by the test it is only known that this single element from (Z/NZ)∗ is in LN as well. Hence, the
test returns ”possibly prime”.

3.3.1 Complexity analysis

Theorem 3.3. The running time of the Fermat test, Algorithm 3, is O(M(k)k).

Proof. Step 1 in Algorithm 3 is to choose a random number a ∈ Z/NZ\{0, 1, N − 1}. Here, it is
assumed that the complexity of generating a random number is O(k), but see Remark 5.2. Step 2 is to
call the square-and-multiply algorithm, Algorithm 1, to compute b = aN−1 mod N . By Theorem 2.8,
the running time of this algorithm is O(M(k)k), where k is the number of bits in the exponent (which
means the number of bits in N − 1 in this case). The third and last step of Algorithm 3 is to check
whether b = 1 or not. This operation takes constant time, O(1). The conclusion is that the running
time of the Fermat test is O(M(k)k).
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3.4 Carmichael numbers
Is the Fermat test sufficient? If N is composite and LN = (Z/NZ)∗, then the test returns ”possibly
prime”, even though N is composite. This means that the Fermat test can prove compositeness of an
integer, but it can not prove primality. Those composite integers N for which LN = (Z/NZ)∗ are called
the Carmichael numbers. The Carmichael numbers are in other words the composite numbers without
any Fermat witnesses.

Definition 3.4.1. [6, p. 27] Let N be a composite natural number and a an integer. Then N is called
a pseudoprime relative to the base a, if aN−1 ≡ 1 (mod N).

By Definition 3.4.1, Carmichael numbers are numbers which are pseudoprime to every relatively prime
base. The smallest Carmichael number is N = 561 = 3 · 11 · 17.

The following Lemma is stated without proof:

Lemma 3.4. [4, p. 521] Any Carmichael number is squarefree.

Because of the existence of Carmichael numbers, there are composite numbers that are not distinguished
from prime numbers by Fermat’s little theorem, Corollary 2.7.1. However, there is a simple way to
improve this situation, and the main ingredient of this improvement is the following Lemma:

Lemma 3.5. [6, p. 27] Let p be a prime number and x ∈ Z. If x2 ≡ 1 (mod p), then x ≡ ±1 (mod p).

Proof. By definition, if x2 ≡ 1 (mod p), then p|x2−1 = (x + 1)(x−1). Hence, p|x + 1 or p|x−1, which
completes the proof.

Consider for example N = 341 and a = 2. Using the square-and-multiply algorithm, Algorithm 1, one
can compute

2340 ≡ 1 (mod 341).

From this, it is not possible to say whether 341 is composite or not, but by repeatedly using Lemma
3.5, it can actually be concluded whether 341 is composite: Assume that 341 is a prime number. Then,
by Lemma 3.5

2170 ≡ ±1 (mod 341),

since (2170)2 = 2340. One can compute that 2170 ≡ 1 (mod 341), which means that the Lemma holds
so far. Now, since 2170 = (285)2, Lemma 3.5 implies that

285 ≡ ±1 (mod 341).

When computing this, one gets that 285 ≡ 32 (mod 341), which shows that 341 can not be a prime
number. This example leads to the following Definition:

Definition 3.4.2. [6, p. 28] An odd composite number N is called a strong pseudoprime relative to
the base a, if either aq ≡ 1 (mod N), or there exists i = 0, . . . , k − 1, such that

a2iq ≡ −1 (mod N),

where N − 1 = 2kq and 2 ∤ q.
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The strong pseudoprimes defined in Definition 3.4.2 are exactly the composite numbers, which satisfy
both Fermat’s little theorem, Corollary 2.7.1, and Lemma 3.5. This leads to the following Proposition,
which shows that a number which fails repeated use of Lemma 3.5, as for the example with N = 341
and a = 2, must be composite:

Proposition 3.6. Let p be an odd prime, and let

p− 1 = 2kq,

where 2 ∤ q. If a ∈ Z and gcd(a, p) = 1, then either aq ≡ 1 (mod p), or there exists i = 0, . . . , k − 1,
such that

a2iq ≡ −1 (mod p).

Proof. Let bi = a2iq, i = 0, . . . , k. Clearly, bk = a2kq = ap−1 ≡ 1 (mod p) by Fermat’s little theorem,
Corollary 2.7.1, and bi+1 = b2

i for i = 0, . . . , k − 1. This means that b0 ≡ 1 (mod p), if and only if
bi ≡ 1 (mod p) for every i = 0, . . . , k. Hence, if b0 ̸≡ 1 (mod p), then there exists bi, i ≥ 0, such that
bi ̸≡ 1 (mod p). Now, let j be the largest index with this property (bj ̸≡ 1 (mod p)). Since j < k

and b2
j ≡ bj+1 ≡ 1 (mod p), then bj ≡ −1 (mod p) by Lemma 3.5 (by the Lemma, bj ≡ 1 (mod p) or

bj ≡ −1 (mod p), and since bj ̸≡ 1 (mod p), it can be deduced that bj ≡ −1 (mod p)).

3.5 The Miller-Rabin Primality Test

Algorithm 4: The Miller-Rabin primality test.
input : An odd integer N ≥ 3.
output : Either ”composite” or ”probably prime”.

1 choose a ∈ Z/NZ\{0, 1, N − 1} uniformly at random
2 d← gcd(a, N)

if d > 1 then
3 return ”composite”
4 end
5 write N − 1 = 2vm with v, m ∈ N, v ≥ 1, and m odd
6 Call the square-and-multiply algorithm, Algorithm 1, to compute b0 = am mod N

7 if b0 = 1 then
8 return ”probably prime”
9 end

10 for i = 1, . . . , v do
11 bi ← b2

i−1 mod N

12 end
13 if bv ̸= 1 then
14 return ”composite”
15 end
16 Let j ← min{0 ≤ i < v : bi+1 = 1}
17 if bj = N − 1 then
18 return ”probably prime” else
19 return ”composite”
20 end
21 end
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The Miller-Rabin primality test, Algorithm 4, improves the simple Fermat test such that there is no
input on which it systematically fails. If a Carmichael number is given as input, then the test recognizes
it as a composite number.

Theorem 3.7. If Algorithm 4 is given a prime N as input, then the Algorithm returns ”probably
prime”. If the Algorithm is given a Carmichael number or another composite number N as input, then
the Algorithm recognizes the compositeness of the number and returns ”composite” with probability ≥ 1

2 .

Proof. The proof of Theorem 3.7 is divided into three cases: First, the case where N is prime is shown,
then the case where N is composite and not a Carmichael number is shown, and finally the case where
N is a Carmichael number is shown:

The case where N is prime follows directly from Proposition 3.6. Either, b0 = am ≡ 1 mod N and the
Algorithm returns ”probably prime” in line 8, or there exists i = 0, . . . , v− 1, such that bi = a2im ≡ −1
mod N and the Algorithm returns ”probably prime” in line 18. By Fermat’s little theorem, Corollary
2.7.1, then bv = a2vm ≡ 1 mod N , and the Algorithm correctly does not return ”composite” in line 14.
Hence, if N is prime, then Algorithm 4 always proves the primality by returning ”probably prime”.

The next case to consider is the case where N is composite and not a Carmichael number. This part
is easily proved: If d = gcd(a, N) > 1, then (Z/NZ)∗ ̸= LN , and the Algorithm correctly returns
”composite” in line 3. If N is composite, then the randomly chosen a is a Fermat witness for N with
probability ≥ 1

2 . In such a case, then bv ̸= 1, and the Algorithm returns ”composite” in line 14.

The last case to consider is the case where N is a Carmichael number which is the more complicated
part of the proof: First, define

I = {i : 0 ≤ i ≤ v and ∀u ∈ (Z/NZ)∗u2im = 1}.

Since N is a Carmichael number, it is known that (Z/NZ)∗ = LN by the definition of Carmichael
numbers, hence v ∈ I. Since m is odd, one can take (−1)20m = (−1)m = −1 ̸= 1 mod N which means
that 0 /∈ I. By induction, it follows that i + 1 ∈ I for any i ∈ I with i < v, since

u2im = 1⇒ u2i+1m = u212im = (u2im)2 = 12 = 1.

Hence, there exists some l < v such that

I = {l + 1, l + 2, . . . , v}.

Define the following subset of (Z/NZ)∗:

G = {u ∈ (Z/NZ)∗ : u2lm = ±1} ⊆ (Z/NZ)∗.

This subset of (Z/NZ)∗ includes all values of a for which the algorithm returns ”probably prime”. If it
can be shown that G is actually a subgroup of (Z/NZ)∗ and that G ̸= (Z/NZ)∗, then the probability
that the a chosen in the algorithm, modulo N , is in G is bounded by Lagrange’s theorem in Theorem
2.4.

Claim 3.8. G is a group.

Proof. The claim is proved by showing that G satisfies the three properties in Definition 2.2.1:
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• Take two elements a1, a2 ∈ G. Then:

(a1a2)2lm = a2lm
1 a2lm

2 = ±1 · ±1 = ±1.

Hence, a1a2 ∈ G, and this shows that the first property is satisfied.

• There exists indeed the identity element, 1, in G since

12lm = 1.

• If a ∈ G, then

(a−1)2lm = (a2lm)−1 = ±1.

Hence, a−1 ∈ G, which shows that the inverse of any element in G is also contained in G.

The three properties are satisfied which proves the claim that G is a group.

Claim 3.9. G ̸= (Z/NZ)∗.

Proof. If it is possible to find an element in (Z/NZ)∗ \ G, then the claim is proved. First, take a
b ∈ (Z/NZ)∗ such that b2lm ̸= 1. It might be the case that b ∈ G, but the element b can be used to
build an element c ∈ (Z/NZ)∗ \G. Since N is a Carmichael number, N is squarefree by definition. This
means that N can be written as

N = p1 · p2 · · · pk,

where all the primes are distinct. From the Chinese Remainder Theorem in Theorem 2.9, the following
can be written:

ZN ≃ Zp1 × Zp2 × · · · × Zpk
≃ Zpi × Z(N/pi).

Hence, from the Chinese Remainder Theorem, ∃i such that b2lm ̸= 1 mod pi, since 1 ∈ (Z/NZ)∗ is
the only element which is congruent to 1 mod each pi in the equation above. The Chinese Remainder
Theorem implies that there exists a c ∈ Z/NZ such that

c ≡ b mod pi and c ≡ 1 mod N/pi.

It is now claimed that this c ∈ (Z/NZ)∗ \ G. If it can be proved that this claim is correct, then the
proof is done. First, it is shown that c ∈ (Z/NZ)∗ by showing that it has a multiplicative inverse. Let
d ∈ Z/NZ such that

d ≡ b−1 mod pi and d ≡ 1 mod N/pi.

This implies that

c · d ≡ 1 mod pi and c · d ≡ 1 mod N/pi.

Hence, d = c−1. To show that c /∈ G, c2lm is considered. From what is known so far, the following can
be written:

c2lm ≡ b2lm ̸= 1 mod pi and c2lm ≡ 12lm = 1 mod N/pi.

Hence, by the Chinese Remainder Theorem, c2lm ̸= 1, since it is not the case that cnlm = 1, both
mod pi and mod N/pi. Similarly, it can be concluded that c2lm ̸= −1. The fact that N is odd implies
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that 1 ̸= −1 mod N/pi. Hence, it is not the case that cnlm = −1, both mod pi and mod N/pi, and
therefore it also follows from the Chinese Remainder Theorem that c2lm ̸= −1. Hence, c2lm ̸= 1 and
c2lm ̸= −1, which shows that c /∈ G. To sum up: The group G which includes all values of a for which
Algorithm 4 returns ”probably prime”, is a subgroup of (Z/NZ)∗, and since G ̸= (Z/NZ)∗, then the
probability that the randomly chosen a is in G is bounded by Lagrange’s theorem, Theorem 2.4. This
implies that Algorithm 4 recognizes a Carmichael number N as composite with probability ≥ 1

2 .

This completes the proof of Theorem 3.7.

3.5.1 Complexity analysis
Theorem 3.10. The running time of the Miller-Rabin test, Algorithm 4, is O(M(k)k).

Proof. As for the Fermat test, step 1 in the Miller-Rabin test, Algorithm 4, is to choose a random
number a ∈ Z/NZ\{0, 1, N − 1}, and again it is assumed that this step takes O(k). Step 2 is to check
whether gcd(a, N) > 1 or not, and by Theorem 2.10 the complexity of this step is O(M(k) lg(k)). In line
6, the square-and-multiply algorithm, Algorithm 1, is called to compute b0 = am mod N . By Theorem
2.8, the complexity of this step is O(M(k)k). To check whether b0 = 1 or not in line 7 takes constant
time, O(1). In line 10-12, bi = b2

i−1 mod N is computed for i = 1, . . . , v. This means v multiplications
and v modulo reductions, but since these operations are applied to integers modulo N , which means k

bits, then the running time of each multiplication or modulo reduction is M(k). This means that the
total running time of this step is O(v ·M(k)). To make this complexity more readable, note that

N − 1 = 2vm⇔ lg(N − 1) = lg(2vm)⇔ lg(N − 1) = v + lg(m)⇔ v ≤ lg(N − 1) ≤ lg(N).

This means that the complexity of this step can more precisely be written as O(M(k) lg(N)) =
O(M(k)k). The next step in the algorithm is to check whether bv ̸= 1 or not, which takes O(1).
In line 16, j is determined by going through at most v numbers. The complexity of this step is
O(v) = O(lg(N)). The last step in the algorithm is to check whether bj = N − 1 or not, which takes
constant time, O(1). The conclusion is that the running time of the Miller-Rabin test is O(M(k)k).



CHAPTER 4
The AKS algorithm

In August 2002, M. Agrawal, N. Kayal, and N. Saxena announced a spectacular new development, a
deterministic, polynomial-time primality test. This is now known as the AKS test. The new test is not
just sensational because it finally settles the theoretical issue of primality testing after researchers were
so close in so many ways, it is remarkable in that the test itself is quite simple.

4.1 Preliminaries
Before the AKS primality test is stated and proved, some preliminaries are introduced. The following
Lemmas 4.1 and 4.2 will be useful when proving the correctness of the AKS test.

Lemma 4.1. If k|τ , then (xk − 1)|(xτ − 1) in R[x] for some ring R.

Proof. Let τ = k · c, c ∈ Z[x]. Consider:

(xk − 1)(xk(c−1) + · · ·+ x2k + xk + 1) =(xkc + · · ·+ x3k + x2k + xk)

− (xk(c−1) + · · ·+ x2k + xk + 1)
=xkc − 1
=xτ − 1,

which completes the proof.

Lemma 4.2. Let Z[u, v] be a bivariate polynomial ring. For any g(x) ∈ Z[x], u−v divides g(u)−g(v) ∈
Z[u, v].

Proof. Let h(u) = g(u)−g(v) ∈ Z[v][u], where Z[v][u] corresponds to R[u], where R = Z[v] is an integral
domain. Then h(u) has a root v ∈ R, which means that (u− v)|h(u), and this completes the proof.

4.1.1 The Isomorphism Theorem
The Isomorphism Theorem is a fundamental tool in algebra, and therefore it is now stated without
proof. In this project, the Isomorphism Theorem for rings will be used, and it is presented in Theorem
4.3.

Theorem 4.3 (The Isomorphism Theorem for rings). [6, p. 120] Let R and S be rings and f : R→ S

a ring homomorphism with kernel K = ker(f). Then

f̃ : R/K → f(R)

given by f̃(r + K) = f(r) is a well defined map and a ring isomorphism.
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Theorem 4.4. For any p ∈ Z and h(x) ∈ Z[x], then Z[x]/⟨p, h(x)⟩ and (Z/pZ)[x̄]/⟨h(x̄)⟩ are isomorphic.

Proof. The isomorphism between Z[x]/⟨p, h(x)⟩ and (Z/pZ)[x̄]/⟨h(x̄)⟩ is proved in the following way:
The homomorphism,

ϕ : Z[x]→ (Z/pZ)[x̄]

naturally exists, and it simply reduces each coefficient of a polynomial modulo p. Let h̄(x̄) = ϕ(h).
Then the homomorphism,

η : (Z/pZ)[x̄]→ (Z/pZ))[x̄]/⟨h̄(x̄)⟩
η(f(x̄)) = f(x̄) + ⟨h̄(x̄)⟩

naturally exists as well, and it simply takes the congruence class of a polynomial modulo h̄(x̄). Note
that the polynomial f is already reduced modulo p. The composition of the two homomorphisms is
then defined as

η ◦ ϕ : Z[x]→ (Z/pZ)[x̄]/⟨h(x̄)⟩.

The composition is a homomorphism as well, and as both ϕ and η are surjective, (η◦ϕ) is also surjective.
The Isomorphism Theorem, Theorem 4.3, is now used. The fact that (η ◦ ϕ) is surjective means that

Im(η ◦ ϕ) = (Z/pZ)[x̄]/⟨h(x̄)⟩.

If it can be shown that ker(η ◦ ϕ) = ⟨p, h(x)⟩, then it can be concluded that

Z[x]/⟨p, h(x)⟩ and (Z/pZ)[x̄]/⟨h(x̄)⟩

are isomorphic, which completes the proof. The kernel of (η ◦ ϕ), ker(η ◦ ϕ), is the set of polynomials
f(x) in Z[x] such that f(x) reduced modulo p and then reduced modulo h̄(x̄) is 0. Clearly, both p and
h(x) are in ker(η ◦ ϕ), which can be expressed as

⟨p, h(x)⟩ ⊂ ker(η ◦ ϕ).

The last step is to show that ker(η ◦ ϕ) is actually equal to ⟨p, h(x)⟩. Let

h̄(x) = h(x) + w(x) · p

and

f(x) = p · u(x)− h̄(x)v(x) = 0,

which means that f is first reduced modulo p and then reduced modulo h̄(x̄). Then there must exist
u(x), v(x), w(x) such that

f(x) = p(u(x) + w(x)v(x))− h(x)w(x) = 0.

This means that f(x) ∈ ⟨p, h(x)⟩. Hence, ker(η ◦ ϕ) = ⟨p, h(x)⟩, which completes the proof.

The following Theorem 4.5 presents a map which will be useful when proving the correctness of the
AKS primality test:
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Theorem 4.5. Let n, p be integers such that p|n. Then the following map ϕ is a well defined map:

ϕ : Z/nZ→ Z/pZ
a + nZ 7→ a + pZ.

Proof. If a + nZ = b + nZ, then

ϕ(a + nZ) = ϕ(b + nZ)⇒ a + pZ = b + pZ,

since

n|(a− b)⇒ p|(a− b)⇒ a + pZ = b + pZ.

4.1.2 Roots of unity and cyclotomic polynomials
Definition 4.1.1. [6, p. 154] A complex number ξ is called an nth root of unity for a positive integer
n if

ξn = 1,

which means that the nth roots of unity are exactly the roots of the polynomial xn − 1. The nth roots
of unity can also be written as

ξk = ek2πi/n,

for k = 1, . . . , n.

It may happen that n is not the smallest integer for which ξn = 1. Now, denote the root as ζ. If ζn = 1
and

ζ, ζ2, . . . , ζn−1 ̸= 1,

then the complex number ζ is called a primitive nth root of unity. The following Lemma clarifies the
concept of primitive nth roots of unity:

Lemma 4.6. [6, p. 155] A complex number ζ is a primitive nth root of unity if and only if

ζ = ek2πi/n,

where 1 ≤ k ≤ n and gcd(k, n) = 1. If ζ is a primitive nth root of unity and ζm = 1, then n | m.

Proof. By Definition 4.1.1, the nth roots of unity are

ek2πi/n,

where k = 1, . . . , n. Let ξ = ek2πi/n be an nth root of unity. If ξm = 1, then k2πm/n is an integer
multiple of 2π which implies that n | km. Assume that gcd(k, n) = g > 1. Then ξn/g = 1 which would
imply that ξ is not a primitive nth root of unity. Oppositely, assume that gcd(k, n) = 1. Then n | km

implies that n | m, by Corollary 2.10.1. This implies that

ξ, ξ2, . . . , ξn−1 ̸= 1,
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which shows that ξ is a primitive nth root of unity.
Now, the last part of the Lemma: If ζ is a primitive nth root of unity and ζm = 1, then the following
can be written

m = qn + r,

where 0 ≤ r < n. This shows that ζm = ζr, and since ζ is an nth root of unity and since r < n, then it
must be the case that r = 0. This implies that

m = qn⇒ n | m.

Primitive nth roots of unity are used to define cyclotomic polynomials:

Definition 4.1.2. [6, p. 156] Let n ∈ N with n ≥ 1. Then the nth cyclotomic polynomial is defined as

Φn(x) =
∏

1≤k≤n,gcd(k,n)=1

(x− ek2πi/n),

in C[x]. Cyclotomic polynomials have integer coefficients even though they are defined using roots of
unity in the complex plane.

The following Proposition 4.7 will be useful when studying the correctness of the AKS primality test:

Proposition 4.7. [6, p. 157] Let d, n ∈ N, n ≥ 1. Then

xn − 1 =
∏
d|n

Φd(x). (4.1)

Proof. By Definition 2.6.2, then the polynomial on the left hand side in Equation (4.1) is monic, and
since the right hand side of Equation (4.1) is a product of cyclotomic polynomials, then this side is
monic as well. Now, let ζ be an nth root of unity. By definition of nth roots of unity, then the right
hand side of Equation (4.1) implies that ord(ζ) = d for some d | n, and this means that ζ is a primitive
dth root of unity. By Lemma 4.1, then d | n implies that xd − 1 | xn − 1. Therefore, ζd − 1 | ζn − 1,
but since ζn − 1 = 0, then also ζd − 1 = 0 ⇔ ζd = 1. Hence, ζ is also a root of the right hand side of
Equation (4.1). The conclusion is that the polynomials of each side of the equality in Equation (4.1)
are both monic and have the same roots which means that they are equal.

4.2 From Fermat’s little theorem to the AKS primality test
Recall that the binomial theorem gives a formula for expanding (x + y)n as a sum of multiples of terms
xiyn−i. The formula is given as

(x + y)n =
n∑

i=0

(
n

i

)
xiyn−i,

where
(

n
i

)
= n!

i!(n−i)! and n! denotes the factorial of n (n! = n · (n− 1) · · · 2 · 1)[5, p. 8]. However, often
the expression (x + y)n is written incorrect, namely as

(x + y)n = xn + yn (4.2)

The formula in Equation (4.2) is by some called the Child’s Binomial Theorem, and it turns out that
there are some circumstances for which the expression is actually correct. This claim will be explained
by stating and proving the following Theorem:
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Theorem 4.8. [5, p. 12] An integer n is prime if and only if

(x + a)n ≡ xn + a (mod n), (4.3)

in Z[x] for all a ∈ Z.

Proof. The proof is divided into two cases: First, it is shown that if n is prime, then Equation (4.3)
holds. Afterwards, it is oppositely shown that if n is composite, then Equation (4.3) does not hold.
So now, assume that n is prime. Recall that the left hand side of the congruence in Equation (4.3) can
be written as

(x + a)n =
n∑

i=0

(
n

i

)
xian−i.

When only looking at i = 0, the binomial theorem gives(
n

0

)
x0an−0 = n!

0!(n− 0)!
an = n!

n!
an = an, (4.4)

where it has been used that 0! = 1. Similarly, when only looking at i = n, the binomial theorem gives(
n

n

)
xnan−n = n!

n!(n− n)!
xn = n!

n!
xn = xn. (4.5)

Equation (4.4) and (4.5) implies that

(x + a)n =
n∑

i=0

(
n

i

)
xian−i = xn + an +

n−1∑
i=1

(
n

i

)
xian−i. (4.6)

It is now claimed that since n is prime, then n divides
(

n
i

)
for all i such that 1 ≤ i < n. By definition,

it can be seen that(
n

i

)
i! = n!

(n− i!)
= n · (n− 1) · · · 2 · 1

(n− i) · (n− i− 1) · · · 2 · 1
= n · (n− 1) · · · (n− i + 2) · (n− i + 1). (4.7)

Clearly, n divides the right hand side of Equation (4.7), since n divides m · n for some integer m. This
means that n must also divide the other parts of the Equation. Since all terms in i! are less than n,
since 1 ≤ i < n, and since n is prime, then indeed n ∤ i!. Hence, the left hand side of Equation (4.7)
shows that n divides

(
n
i

)
for all i such that 1 ≤ i < n, as claimed. Hence, Equation (4.6) can be reduced

to

(x + a)n ≡ xn + an (mod n), (4.8)

since all the terms
(

n
i

)
xian−i are cancelled out when reduced modulo n. Equation (4.8) does not look

completely like Equation (4.3) yet. Recall that by Fermat’s little theorem, Theorem 2.7.1,

an ≡ a mod n.

Applying Fermat’s little theorem to Equation (4.8), it can be seen that

(x + a)n ≡ xn + a mod n,

which completes this part of the proof.
Now, assume that n is composite, and let p be a prime dividing n. Consider(

n

p

)
= n!

p!(n− p)!
= n · (n− 1) · · · 2 · 1

p · (p− 1) · · · 2 · 1 · (n− p) · (n− p− 1) · · · 2 · 1
= n · (n− 1) · · · (n− p + 2) · (n− p + 1)

p · (p− 1) · · · 2 · 1
.
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The only terms that p divides in the expression above is the n in the numerator and the p in the
denominator. If pk is the largest power of p dividing n, then pk

p = pk−1 is the largest power of p

dividing
(

n
p

)
. Therefore, n does not divide

(
n
p

)
, and therefore

(x + a)n ̸≡ xn + a mod n,

when n is composite. This completes second part of the proof.

Theorem 4.8 is the basis of the AKS primality test. An obvious question arising from this fact is the
following: Why does the AKS test not simply contain computing (x+a)n−(xn +a) mod n for integers
a and determine whether n divides each coefficient or not? This is indeed a correct primality test. The
problem is that (x+ a)n has in its expansion n coefficients, so computing (x+a)n would involve storing
all these n coefficients which would take too much time. One solution to this problem is to reduce
(x + a)n modulo the polynomial xr− 1 for a small choice of r as well as the reduction modulo n. Hence,
the primality test is now to check whether

(x + a)n ≡ xn + a mod (n, xr − 1) (4.9)

is satisfied or not[5, p. 13]. In this way, the number of evaluations when computing (x+a)n are reduced,
which means that the computation is faster. However, recall what happened if the Fermat test pre-
sented in Chapter 3 was given a Carmichael number as input. Similarly, it can happen that Equation
(4.9) is satisfied for composite n for some values of a and r. In order to avoid this problem, the value
of r and the number of values of a are chosen appropriately, and it turns out that in cases where n is
composite and Equation (4.9) is satisfied, then n will be a prime power. This explains why the check
of the congruence in Equation (4.9) does not account for the whole AKS primality test (see Theorem 4.9).

Now, it is finally time to present the AKS primality test:

Theorem 4.9 (The AKS primality test). [5, p. 4] For given integer n ≥ 2, let r be a positive integer
< n, for which ordr(n) > (log n)2. Then n is prime if and only if

• n is not a perfect power,

• n does not have any prime factor ≤ r,

• (x + a)n ≡ xn + a (mod n, xr − 1) for each integer a, 1 ≤ a ≤
√

r log n.

The proof of Theorem 4.9 is the subject of the following section.

4.3 Correctness of the AKS primality test
Below, Theorem 4.9 is translated into pseudocode:
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Algorithm 5: Agrawal, Kayal, and Saxena
input : An odd integer n ≥ 2, a positive integer r < n, for which n has order > (log n)2

output : Either ”composite” or ”prime”
1 if ∃a, b ∈ N, a, b > 1, such that n = ab then
2 return ”composite”
3 end
4 if ∃z ≤ r, such that 1 < gcd(z, n) < n then
5 return ”composite”
6 end
7 for a = 1 to ⌊

√
r log n⌋ do

8 if (x + a)n ̸≡ xn + a (mod n, xr − 1) then
9 return ”composite”

10 end
11 end
12 return ”prime”

Even though the AKS primality test, Algorithm 4.9, is actually very simple, the proof of the correctness
of the algorithm is quite complicated. Therefore, it is divided into some Lemmas:

Lemma 4.10. If n is prime, then Algorithm 5 returns ”prime”.

Proof. If n is prime, then n is not a perfect power, by the Fundamental Theorem of Arithmetic, Theorem
2.1. The integer n does not have any prime factor ≤ r, again by Theorem 2.1. Finally, by Section 4.2,
the congruences (x + a)n ≡ xn + a mod (n, xr − 1) are satisfied for each integer a, 1 ≤ a ≤

√
r log n.

Hence, if Algorithm 5 is given an integer n which is prime as input, then the Algorithm returns ”prime”
in line 12.

The next Lemma should logically describe what happens when n is composite, but since it now gets
more complicated, it makes more sense to dig into the theory, before the Lemma is finally stated and
proved:

In the following, it is assumed that all the criteria stated in Theorem 4.9 can hold for a composite n.
It will later turn out that this can not be true. In particular, the group G which will be defined in the
following will turn out to be fictive, because it can actually not exist:

Now, take an odd integer n > 1 and assume that n is not a perfect power, n does not have any prime
factor ≤ r, for which ordr(n) = d > (log n)2, and such that the congruences

(x + a)n ≡ xn + a mod (n, xr − 1), (4.10)

are satisfied for each integer a, 1 ≤ a ≤ A, where A =
√

r log n. Furthermore, assume that n is
composite. If it can be shown that these assumptions can not all be true, then it is proved that the
criteria in Theorem 4.9 can only hold when n is prime. Since n is composite and not a perfect power,
then n must have at least two prime factors, by the Fundamental Theorem of Arithmetic, Theorem 2.1.
Choose a prime p such that p divides n. Equation (4.10) can be seen as elements in the quotient ring
Z[x]/⟨n, xr−1⟩. By Theorem 4.5, it can be seen that ⟨n, xr−1⟩ ⊆ ⟨p, xr−1⟩, since p | n. Therefore, the
congruences in Equation (4.10) can also be expressed as elements in the quotient ring Z[x]/⟨p, xr − 1⟩
which means that

(x + a)n ≡ xn + a mod (p, xr − 1). (4.11)
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By Proposition 4.7, the polynomial xr−1 can be factored into irreducibles in Q[x] as
∏

d|r Φd(x), where
Φd(x) is the dth cyclotomic polynomial whose roots are the primitive dth roots of unity. Each Φr(x)
is indeed irreducible in Q[x], but may not be irreducible in (Z/pZ)[x]. However, this problem is solved
by the following Lemma:

Lemma 4.11. Let h(x) be an irreducible polynomial dividing xr − 1 in (Z/pZ)[x]. Then

(x + a)n ≡ xn + a mod ⟨p, h(x)⟩, (4.12)

for each integer a, 1 ≤ a ≤ A.

Proof. By Theorem 4.5, then ⟨p, h(x)⟩ ⊆ ⟨p, xr − 1⟩, since h(x) | xr − 1.

By Theorem 4.4, the Isomorphism Theorem, Theorem 4.3, shows that the quotient ring F := Z[x]/⟨p, h(x)⟩
is isomorphic to the field (Z/pZ)[x̄]/⟨h(x̄)⟩ ≃ Fpm , where m denotes the degree of h. The field is finite,
since p is a prime, and since h(x̄) is irreducible modulo p.

An algebraic remark to the reader:

Remark. The difference between x and x̄ is explained in the following way: A polynomial with x̄

means that each coefficient has been reduced modulo p,

f(x̄) ∈ (Z/pZ)[x̄],

while the notation x is simply

f(x) ∈ Z[x].

When a ≡ b mod ⟨p, xr − 1⟩ is written, it is assumed that

Z[x]/⟨p, xr − 1⟩ ≃ (Z/pZ)[x̄]/⟨x̄r − 1⟩,

and when a ≡ b mod ⟨p, h(x)⟩ is written, it is assumed that

Z[x]/⟨p, h(x)⟩ ≃ (Z/pZ)[x̄]/⟨h(x̄)⟩. (4.13)

Note that Equation (4.13) corresponds to the isomorphism in Theorem 4.4.

Back to the story towards proving the correctness of the AKS primality test: The non-zero elements of
F form a cyclic group of order pm − 1:

F∗
q = (Fq\{0}, ∗).

It is a multiplicative group, and the elements are defined as

F∗
q = {1, α, α2, . . . , αq−2} = ⟨α⟩,

where α is a primitive element.

Lemma 4.12. The cyclic group F∗
q has a cyclic subgroup,

⟨x⟩ = {1, x, x2, . . . , xr−1}, (4.14)

which has the element x as generator, and where x has order r.
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Proof. The fact that h(x) is a divisor of Φr(x) and not just another divisor of xr − 1 is now used: In
the finite field (Z/pZ)[x]/⟨h(x)⟩, x is a root of h(x). Any root of h(x) is also a root of Φr(x), and the
only roots of Φr(x) are the elements which have multiplicative order r. In this way, the cyclic subgroup
of F∗

q in Equation (4.14) arises.

By Lagrange’s theorem, Theorem 2.4, the order of the cyclic subgroup generated by ⟨x⟩ divides the
order of the cyclic group generated by ⟨α⟩ which means that r | pm − 1. It also implies that

⟨x⟩ ⊆ ⟨α⟩.

Define the multiplicative group

H = {
∏

0≤a≤A

(x + a)ea |ea ∈ Z} ⊆ (Z/pZ)[x]/⟨xr − 1⟩. (4.15)

The notation ea in Equation (4.15) means that different values of a can have different exponents, hence
ea denotes the exponent of that corresponding value of a. Furthermore, let

G = {g mod h(x) | g ∈ H} ⊆ F.

Claim 4.13. All elements of G are non-zero.

Proof. Since G ⊆ F, then an element of G is zero, if one of the terms (x + a) is zero. Consider a term
(x + a) and assume that it is equal to zero,

x + a = 0 ∈ Z[x]/⟨p, h(x)⟩. (4.16)

By Equation (4.12), this means that

(x + a)n ≡ xn + a ≡ 0 mod ⟨p, h(x)⟩. (4.17)

Combining Equation (4.16) and (4.17) would then imply

xn ≡ −a ≡ x mod ⟨p, h(x)⟩. (4.18)

It follows from Equation (4.18) that

xn − x = x(xn−1 − 1) ≡ 0 mod ⟨p, h(x)⟩. (4.19)

Equation (4.19) implies that the multiplicative order of x which is r must divide n− 1:

r | n− 1⇒ n ≡ 1 mod r. (4.20)

Equation (4.20) then implies that

ordr(n) = 1.

This contradicts the assumption that ordr(n) > (log n)2 which proves that all elements of G must be
non-zero.

It follows from Claim 4.13 that G is a multiplicative subgroup of F∗.
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Now, take an element g(x) =
∏

0≤a≤A(x + a)ea ∈ H and consider

g(x)n =
∏

a

((x + a)n)ea

≡
∏

a

(xn + a)ea by Equation (4.11)

= g(xn) mod (p, xr − 1).

(4.21)

From this consideration, it is natural to define the following set:

S = {k ∈ Z>0 | g(xk) ≡ g(x)k mod (p, xr − 1) for all g ∈ H}.

Since ⟨p, xr − 1⟩ ⊆ ⟨p, h(x)⟩ as already described, then

g(x)k ≡ g(xk) mod (p, h(x)),

for each k ∈ S and any g(x) ∈ F which means that an analogy of Child’s Binomial Theorem, Theorem
(4.2) holds for elements of G for elements of S as exponents. Recall that the Child’s Binomial Theorem,

(x + y)n = xn + yn, (4.22)

for integers x, y and a prime n, is a ”wrong” way to rewrite the binomial theorem,

(x + y)n =
n∑

i=0

(
n

i

)
xiyn−i,

but that Equation (4.22) turns out to be correct when n is prime.

Note the following Lemma:

Lemma 4.14. It holds that n, p ∈ S.

Proof. Since p is prime, it follows from the Child’s Binomial Theorem that

g(xp) ≡ g(x)p mod (p, xr − 1),

and hence p ∈ S. It follows from Equation (4.21) that n ∈ S.

As mentioned earlier, it will turn out that the group G can not exist. If this can be proved, then it is
proved that all the criteria in Theorem 4.9 can not hold if n is composite. In order to make this proof
more clear and readable, some Lemmas are first introduced:

Lemma 4.15. The set S is closed under multiplication. This means that if a, b ∈ S, then ab ∈ S.

Proof. Take g(x) ∈ H and a, b ∈ S. By definition,

g(x)b ≡ g(xb) mod (p, xr − 1), (4.23)

and similarly for b. Replacing x by xa in Equation (4.23) gives

g(xa)b ≡ g((xa)b) mod (p, xar − 1). (4.24)

Clearly, r | ar, and then Lemma 4.1 implies that

xr − 1 | xar − 1. (4.25)
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Equation (4.25) implies that Equation (4.24) is also satisfied modulo p and xr − 1:

g(xa)b ≡ g(xa)b mod (p, xr − 1). (4.26)

Then

g(x)ab = (g(x)a)b

≡ g(xa)b since a ∈ S

≡ g((xa)b) by Equation (4.26)
= g(xab) mod (p, xr − 1).

Hence, ab ∈ S.

Lemma 4.16. If a, b ∈ S and a ≡ b mod r, then a ≡ b mod |G|.

Proof. The congruence a ≡ b mod r implies that

r|a− b.

By Lemma 4.1, r|a− b implies that

xr − 1|xa−b − 1 ∈ Z[x].

Clearly, xa−b − 1|c · (xa−b − 1) for any c(x) ∈ Z[x]. If c is chosen as xb, then xb(xa−b − 1) = xa − xb.
This means that

xa−b − 1|xa − xb.

By Lemma 4.2,

xa − xb|g(xa)− g(xb),

for any g(x) ∈ Z[x]. Chaining these divisibility results implies that

xr − 1 | g(xa)− g(xb), (4.27)

for any g(x) ∈ Z[x]. Equation (4.27) implies that

g(xa) ≡ g(xb) mod xr − 1⇒ g(xa) ≡ g(xb) mod (p, xr − 1). (4.28)

Hence, if g(x) ∈ H, then

g(x)a ≡ g(xa) since a ∈ S

≡ g(xb) by Equation (4.28)
≡ g(x)b mod (p, xr − 1) since b ∈ S.

(4.29)

Equation (4.29) implies that

g(x)a ≡ g(x)b mod ⟨p, h(x)⟩ (4.30)
⇒ g(x)a − g(x)b ≡ 0 mod ⟨p, h(x)⟩ (4.31)

⇒ g(x)b(g(x)a−b − 1) ≡ 0 mod ⟨p, h(x)⟩, (4.32)
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since h(x) | xr − 1. Equation (4.32) then implies that

g(x)a−b ≡ 1 mod ⟨p, h(x)⟩, (4.33)

for any g(x) ∈ H. Since any g(x) ∈ G can be lifted to g(x̄) ∈ H, since h(x) | xr − 1, then Equation
(4.33) must hold for any g(x) ∈ G as well. Recall that G is a cyclic subgroup of F∗, and hence there
exists a generator t(x) of G such that

G = {1, t, t2, . . . }.

By Equation (4.32), it is then concluded that

t(x)a−b = 1,

which implies that

|G| | a− b⇔ a ≡ b mod |G|.

Lemma 4.17. If a ∈ S and b ≡ a mod nd − 1, then b ∈ S.

Proof. By definition, ordr(n) = d, and what this actually means is that nd ≡ 1 mod r. This congruence
implies that

r|nd − 1. (4.34)

By Lemma 4.1, Equation (4.34) implies that

xr − 1|xnd−1 − 1 ∈ Z[x].

Then, xr−1 clearly divides c·(xnd−1−1) for any c(x) ∈ Z[x]. If c is chosen as x such that x(xnd−1−1) =
xnd − x, then

xr − 1|xnd

− x. (4.35)

The congruence b ≡ a mod nd − 1 implies that nd − 1|b− a. Now, consider

xnd

− x = x(xnd−1 − 1)
xb − xa = xa(xb−a − 1).

Clearly, x|xa, and by Lemma 4.1, nd − 1|b − a implies that xnd−1 − 1|xb−a − 1. Now, using the fact
that if j|k and l|m for j, k, l, m ∈ Z[x]>0, then j|km and l|mk, and hence jl|km, it can be seen that

x(xnd−1 − 1)|xa(xb−a − 1)⇒ xnd

− x|xb − xa.

By Lemma 4.2,

xb − xa|g(xb)− g(xa),

for any g(x) ∈ Z[x], and hence,

g(xb) ≡ g(xa) mod (p, xr − 1), (4.36)
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since the divisibility results implies that

xr − 1 | g(xb)− g(xa).

If g(x) ∈ H, then g(x)nd ≡ g(xnd) mod (p, xr − 1) by Lemma 4.15, since n ∈ S. By Lemma 4.2,
xnd −x|g(xnd)− g(x), and chaining this with Equation (4.35), it can be seen that xr−1 | g(xnd)− g(x).
This implies that g(xnd) ≡ g(x) mod xr − 1, and hence g(xnd) ≡ g(x) mod (p, xr − 1). This implies
that

g(x)nd

≡ g(xnd

) ≡ g(x) mod (p, xr − 1). (4.37)

Clearly,

g(x)a = g(x)b(g(x)a−b). (4.38)

Since nd − 1 | a − b, then there exists some c ∈ Z[x] such that a − b = c(nd − 1) which implies that
g(x)a−b = (g(x)nd−1)c. By Equation (4.37), it is known that

g(x)nd

≡ g(x) mod (p, xr − 1)

⇒g(x)nd

− g(x) = g(x)(g(x)nd−1 − 1) ≡ 0 mod (p, xr − 1),

and hence

g(x)nd−1 ≡ 1 mod (p, xr − 1). (4.39)

Since g(x)nd−1 | g(x)a−b, Equation (4.39) implies that

g(x)a−b ≡ 1 mod (p, xr − 1).

Combining this with Equation (4.38), it follows that

g(x)b ≡ g(x)a mod (p, xr − 1). (4.40)

Hence,

g(xb) ≡ g(xa) by Equation (4.36)
≡ g(x)a since a ∈ S

≡ g(x)b by Equation (4.40),

which implies that b ∈ S.

Lemma 4.18. The following congruence holds:

n/p ≡ npϕ(nd−1)−1 mod nd − 1.

Proof. By definition, p|n, and therefore also p|nd. This means that

gcd(p, nd − 1) = 1,

and then, by Euler’s Theorem, Theorem 2.7,

pϕ(nd−1) ≡ 1 mod (nd − 1).
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Hence,

pϕ(nd−1)−1 ≡ 1
p

mod (nd − 1),

where 1
p is the multiplicative inverse of p in the multiplicative group (Z/(nd − 1)Z)∗. Now, multiplying

by n on both sides gives

npϕ(nd−1)−1 ≡ n

p
mod (nd − 1),

which completes the proof.

Lemma 4.19. It holds that n/p ∈ S.

Proof. Let a = npϕ(nd−1)−1 and b = n/p. If it can be shown that b ∈ S, then the claim is proved. First,
note that a ∈ S since n, p ∈ S, by Lemma 4.15. By Lemma 4.18, it can be seen that

n/p ≡ npϕ(nd−1)−1 mod nd − 1⇒ b ≡ a mod nd − 1. (4.41)

Finally, combining Equation (4.41) and the fact that a ∈ S, it follows from Lemma 4.17 that

b = n/p ∈ S,

which completes the proof.

Before the next Lemma is stated, the following definition is introduced: Let R be the subgroup of
(Z/rZ)∗ generated by n and p,

R = ⟨n, p⟩ ⊆ (Z/rZ)∗. (4.42)

Lemma 4.20. Suppose that f(x), g(x) ∈ Z[x], with deg f, deg g ≤ |R|, and that f(x), g(x) mod (p, h(x))
both are in G. If f(x) ̸≡ g(x) mod p, then f(x) ̸≡ g(x) mod (p, h(x)).

Proof. The Lemma is proved by showing the contrapositive, i.e. if f(x) ≡ g(x) mod (p, h(x)), then
f(x) ≡ g(x) mod p. As this proof gets a bit complicated, an algebraic substitution used in the proof
is first exemplified:

Example 4.21. Let p = 3 and h(x) = x2 + x + 2, an irreducible polynomial modulo p. Let f(x) =
x2 + 11x + 1. Now, f(x) is reduced modulo p:

f̄(x̄) = x̄2 + 2x̄ + 1 ∈ (Z/pZ)[x̄].

Now, either f̄(x̄) is reduced modulo h(x̄), which gives

f̂(x̄) = x̄ + 2 ∈ (Z/pZ)[x̄]/⟨h(x̄)⟩,

or a new variable y is put into f̄ and then considered over the polynomial ring (Z/pZ)[y] over the big
field Fpm [y]:

f̄(y) = y2 + 2y + 1 ∈ (Z/pZ)[y] ⊆ Fpm [y].

In this way, the field (Z/pZ) is now considered as a subset of the bigger field Fpm , where m denotes the
degree of h.
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Now, the proof of Lemma 4.20: Assume that f(x) ≡ g(x) mod (p, h(x)). Let f̄(x̄), ḡ(x̄) ∈ (Z/pZ)[x̄]
and consider f̄(y), ḡ(y) ∈ (Z/pZ)[y] ⊆ Fpm [y] as described in the Example. Furthermore, let

∆(y) = f̄(y)− ḡ(y) ∈ Fpm [y].

For an element x̄ ∈ Fpm = (Z/pZ)[x̄]/⟨h(x̄)⟩, if k ∈ S, then

∆(x̄k) = f̄(x̄k)− ḡ(x̄k)
= f̄(x̄)k − ḡ(x̄)k

= (f̄(x̄)− ḡ(x̄))(f̄(x̄)k−1 + f̄(x̄)k−2ḡ(x̄) + · · ·+ f̄(x̄)ḡ(x̄)k−2 + ḡ(x̄)k−1)
= 0 ∈ Fpm ,

because of the assumption that f(x) ≡ g(x) mod (p, h(x)). This means that ∆(y) ∈ Fpm [x] has a root
x̄k for any k ∈ S. Recall that R is defined as R = ⟨n, p⟩ ⊆ (Z/rZ)∗. Let k = t + u · r, t ∈ R, k ∈ S, and
some integer u. Then

x̄k = x̄t+u·r = x̄t + (x̄r)u = x̄t,

since ord(p,h(x))(x̄) = r, which means that x̄r = 1 mod (p, h(x)). Then ∆(x̄k) = 0 implies that
∆(x̄t) = 0. This means that each t ∈ R leads to a different root in ∆(y), and hence ∆(y) has ≥ |R|
distinct roots. By assumption, deg∆ < |R|, which means that it must be the case that ∆(y) = 0.
Hence,

f̄(y)− ḡ(y) = 0 ∈ (Z/pZ)[y]⇒ f(x) ≡ g(x) mod p,

which completes the proof.

The following Lemma 4.22 shows the opposite of Lemma 4.10: Lemma 4.10 showed that the criteria in
Theorem 4.9 holds when n is prime, while Lemma 4.22 shows that the criteria in Theorem 4.9 does not
hold when n is composite. Hence, the following Lemma 4.22 is the main part of the proof of Theorem
4.9.

Lemma 4.22. If n is composite, then all the criteria in Theorem 4.9 for n being a prime can not hold.
Hence, if n is composite, then Algorithm 5 returns ”composite”.

Proof. Lemma 4.22 is proved by showing that the group G can not exist. This is done by showing an
upper and lower bound on the size of G:

Claim 4.23. The size of G has the following lower bound:

|G| > n
√

|R| − 1.

Proof. Recall that R is defined as R = ⟨n, p⟩ ⊆ (Z/rZ)∗. Since there are at most r − 1 elements of
(Z/rZ)∗, then |R| < r. The set of elements generated by n modulo r is a subset of R, ⟨n⟩ ⊆ R. Since

ordr(n) = d > (log n)2,

then

d < r ⇒ d ≤ |R| ⇒ (log n)2 < |R| ⇒ log n <
√
|R|.
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Recall that A =
√

r log n, defined in Theorem 4.9. It is now claimed that A < p, which is shown in the
following way: From above, it is known that

|R| < r ∧ log n <
√
|R| ⇒ log n <

√
r,

which means that

A =
√

r log n <
√

r
√

r = r.

Step 2 in the AKS primality test, Theorem 4.9, is to check whether n has any prime factor ≤ r, which
means that indeed

p > r ⇒ p > A.

The fact that A < p will be useful later. Now, define

B :=
√
|R| log n.

Clearly,

B =
√
|R| log n <

√
r log n = A, (4.43)

and

B <
√
|R|

√
|R| = |R|, (4.44)

since log n <
√
|R|. Consider f(x) =

∏
a∈Tf

(x + a) and g(x) =
∏

b∈Tg
(x + b), f, g ∈ Z[x], where

Tf , Tg ⊆ {1, 2, . . . , B}, Tf ̸= Tg. If it can be shown that

• f, g mod (p, h(x)) both are in the group G,

• f(x) ̸≡ g(x) mod p,

• deg f, deg g < |R|,

then it can be concluded that f(x) ̸≡ g(x) mod (p, h(x)), by Lemma 4.20. The three steps above are
proved in the following way:

• By the definition of G, then f, g mod (p, h(x)) both are in G, if B < A. By Equation (4.43), it
is the case that B < A.

• Let f̄(x), ḡ(x) ∈ (Z/pZ)[x]. Now, the fact that for a field k, then k[x] is always a unique factor-
ization domain, is used: Since (Z/pZ) is a field, then there is unique factorization in (Z/pZ)[x].
This means that if f̄(x) and ḡ(x) have distinct factorizations, then f̄(x) and ḡ(x) are distinct. By
the definition of f̄ and ḡ(x),

f̄(x) =
∏

a∈Tf

(x + a) mod p

=
∏

a∈Tf

(x + [a]p) ∈ Fp[x],

and similarly,

ḡ(x) =
∏

b∈Tg

(x + [b]p) ∈ Fp[x],

where [a]p denotes the reduction of a modulo p. The following Example shows a situation where
f̄ and ḡ do not have unique factorization:
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Example 4.24. Let p = 11 and B = 20. Furthermore, let Tf = {1, 2} and Tg = {12, 13}. Then

f̄(x) = (x + 1)(x + 2)
ḡ(x) = (x + 12)(x + 13) = (x + 1)(x + 2) = f̄ ,

which shows that f̄ and ḡ have the same factorization.

However, it is already known that B < A < p, which means that f̄ ̸= ḡ, when Tf ̸= Tg. By
definition, it is the case that Tf ̸= Tg, and therefore it can be concluded that f(x) ̸≡ g(x) mod p.

• By the definition of f and g, then deg f, deg g ≤ B. By Equation (4.44), it is known that B < |R|.
Hence, deg f, deg g < |R|.

Since all three conditions are satisfied, it follows from Lemma 4.20 that f(x) ̸≡ g(x) mod (p, h(x)).
This shows that the products

∏
a∈T (x + a) give distinct elements of G for every proper subset T of

{0, 1, 2, . . . , B}. The set {0, 1, 2, . . . , B} clearly consists of B + 1 distinct elements, and when creating
a subset T of this set, there are two possible choices for each element: To include it or not to include it.
Only the empty set where none of the elements are included should not be a possible subset T . Hence,
it can be concluded that

|G| ≥ 2B+1 − 1 > n
√

|R| − 1.

Claim 4.25. The size of G has the following upper bound:

|G| ≤ n
√

|R| − 1.

Proof. Since it is assumed that n is not a perfect power, then n is not equal to pl for some integer l.
This means that all the integers nipj with i, j ≥ 0 are distinct. If 0 ≤ i, j ≤

√
|R|, then there are

(
√
|R|+ 1)2 > |R|

distinct integers of the form nipj . The same holds when considering integers of the form bipj where
b = n

p , since n
p ∈ S, by Lemma 4.19. When considering these elements in (Z/rZ), it follows that some

of them must be congruent modulo r. Let bi1pj1 and bi2pj2 be congruent modulo r:

bi1pj1 ≡ bi2pj2 mod r. (4.45)

By Lemma 4.15, it can be seen that

bi1pj1 , bi2pj2 ∈ S, (4.46)

since n
p , p ∈ S. Combining Equation (4.45) and (4.46), it follows from Lemma 4.16 that

bi1pj1 ≡ bi2pj2 mod |G|.

Hence,

|G| ≤ |bi1pj1 − bi2pj2 | by Lemma 4.16

≤ (n

p
· p)
√

|R| − 1 since 0 ≤ i, j ≤
√
|R|

= n
√

|R| − 1,

which proves that |G| has the upper bound which was claimed.



34 4 The AKS algorithm

To sum up: The size of G has the following lower bound

|G| > n
√

|R| − 1,

but the size of G also has the following upper bound

|G| ≤ n
√

|R| − 1,

which is a contradiction. The conclusion is that all the criteria in Theorem 4.9 can not hold if n is
composite. Hence, if Algorithm 5 is given a composite integer n as input, then the Algorithm returns
”composite”.

4.3.1 Complexity analysis
The complexity analysis of the AKS primality test is a bit more comprehensive than the complexity
analysis of the other algorithms. Therefore, some other results are presented, before the running time
of the AKS test is stated and proved.

Note that in the following, some of the running times which are presented, including the total running
time of the AKS test, is output sensitive which means that the running time depends on the size of r

(which is still unknown). Afterwards, the size of r will be discussed.

Theorem 4.26. It can be checked whether n is a perfect power or not by using p-adic Newton iteration,
see Algorithm (?). The running time of this step therefore becomes O(lg nM(lg n)).

Proof. Algorithm (?) is structured in the following way: Given n, t ∈ N, n > 1, it is checked whether
there exists m ∈ Z such that mt = n. The running time of this is O(M(lg n))[4, p. 272]. Note that if
t > lg n, then 2t > n which means that such an integer m does clearly not exist. Hence, t ≤ lg n. For
the purpose of the AKS primality test, it should be checked whether there exist any value of t such that
there exists a value of m satisfying mt = n. However, since 2 ≤ t ≤ lg n, then the algorithm should only
be run lg n times. Hence, the total running time is O(lg nM(lg n)). However, there is one detail about
this algorithm and its running time: The algorithm described here only works for odd values of t, but
by modifying the algorithm such that it uses a 3-adic Newton iteration, it works for even values of t.
The running time of the modified algorithm is also O(lg nM(lg n))[4, p. 292], hence the final running
time of checking whether n is a perfect power or not is O(lg nM(lg n)).

The following Theorem describes the complexity of finding an appropriate r. Note that this complexity
is output sensitive, which means that the complexity actually depends on the size of r. The size of r is
discussed in Section 4.3.2:

Theorem 4.27. The running time of finding an integer r for which ordr(n) > (log n)2 is O(r · (log n)2 ·
M(log r)).

Proof. The integer r is determined as described in the implementation Section. The outer loop in the
Algorithm for determining r runs r− (log n)2 < O(r) times. The inner loop runs at most (log n)2 times
for each iteration of the outer loop. For each iteration of the inner loop, one multiplication modulo q

is used. The running time of this operation is M(log q) ≤ M(log r). Hence, the total running time of
finding r is

O(r · (log n)2 ·M(log r)).
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Theorem 4.28. The running time of checking whether the congruence

(x + a)n ≡ xn + a mod (n, xr − 1), (4.47)

for each integer a, 1 ≤ a ≤
√

r log n is Õ(r3/2(log n)3).

Proof. Recall the Õ-notation introduced in Section 2.4 which is used when the O-notation inludes too
much information. The Õ-notation is less informative, since it swallows log-factors. The Õ-notation
will be used to show this running time, since it would get too complicated otherwise:
A way to compute (x + a)n mod (n, xr − 1) is to use the square-and-multiply algorithm, Algorithm 1,
in the ring R = Z[x]/⟨n, xr − 1⟩. By Section 2.5, it is known that the complexity of this is O(log n)
operations in the ring R. The next question is what the complexity of one operation in R is. This is
explained in the following way: An element of R can be represented as

f(x) + ⟨xr − 1⟩,

where f(x) ∈ (Z/nZ)[x] and has degree at most r − 1. Take two elements of R, f(x) + ⟨xr − 1⟩ and
g(x) + ⟨xr − 1⟩. In order to multiply f(x) and g(x), they are first multiplied in (Z/nZ)[x], and this
result is then reduced modulo xr − 1. The complexity of multiplying f(x) and g(x), both of degree less
than r, is M(r) operations in (Z/nZ)[x], and the complexity of each operation in (Z/nZ) is M(log n)
bit operations. Hence, the total running time of multiplying f(x) and g(x) in (Z/nZ)[x] is Õ(r log n).
The next step is to reduce the result modulo xr − 1. This is done as a division in (Z/nZ)[x], and
the complexity of this step is the same as for a multiplication which means Õ(r log n)[4]. Hence, the
complexity of the reduction modulo xr − 1 is Õ(r log n). To sum up: The complexity of computing
(x + a)n mod (n, xr − 1) is Õ(r log n) operations in R, and the complexity of each of these operations
is Õ(r log n). Hence, the complexity of checking the congruence in Equation (4.47) for one value of a

is Õ(r log n2). Since the congruence should be checked for
√

r log n values of a, the total complexity of
this step becomes

Õ(
√

r log n · r(log n)2) = Õ(r
√

r(log n)3) = Õ(r · r1/2(log n)3) = Õ(r3/2(log n)3).

Theorem 4.29. The running time of the AKS primality test, Algorithm 5, is Õ(r3/2(log n)3).

Proof. Step 1 in Algorithm 5 is to determine whether n is a perfect power. According to Theorem
4.26, this can be determined by using p-adic Newton iteration which has running time O(lg nM(lg n)).
The next step is to find an integer r for which ordr(n) > (log n)2. By Theorem 4.27, this step takes
O(r(log n)2M(log r)). The next step in Algorithm 5 is to determine whether gcd(z, n) > 1 for some
z ≤ r. By Theorem 2.10, the running time of calculating gcd is O((log n)2), and since gcd should be
calculated for ≤ r integers, the running time of this step is O(r(log n)2). The last step in Algorithm
5 is to determine whether (x + a)n ≡ xn + a (mod n, xr − 1) for a = 1, 2, . . . , [

√
r log n]. By Theorem

4.28 is

Õ(r3/2(log n)3).

The conclusion is that the running time of the AKS primality test is Õ(r3/2(log n)3).
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4.3.2 Specifying the size of r

By definition, r is indeed greater than ordr(n) > (log n)2 which means that r > (log n)2. Assume that
r ∈ O((log n)2), then

Õ(r 3
2 (log n)3) = Õ((log n) 3

2 ·3(log n)3) = Õ((log n)3+3) = Õ((log n)6),

which means that the running time of the AKS test can not be smaller than Õ((log n)6).

The following Lemma is stated without proof:

Lemma 4.30. [5, p. 20] If n ≥ 6, then there is a prime r ∈ [(log n)5, 2(log n)5] for which ordr(n) >

(log n)2.

In continuation of Lemma 4.30, assume that r ∈ O((log n)5), then

Õ(r 3
2 (log n)3) = Õ((log n) 3

2 ·5(log n)3) = Õ((log n) 15
2 (log n)3) = Õ((log n) 15

2 +3) = Õ((log n)10 1
2 ).

The size of r can be discussed much further. However, this part is for now left as future work.



CHAPTER 5
Implementations

The primality tests have been implemented in Python using SageMath. In this chapter, the implemen-
tations are shown, and some parts of the implementations are explained. Furthermore, it is explained
how the implementations have been tested for correctness.

5.1 Implementation of trial division
First of all, the primality test by trial division, Algorithm ??, has been implemented. The implementa-
tion is shown below:

1 def trial_division(n): #Primality test by trial division. Input: an odd integer n
which is being tested for primality↪→

2 a = []
3 for f in [1..floor(sqrt(n))]:
4 if is_prime(f):
5 a.append(f) #Makes a list of all primes <= sqrt(n)
6 for prime in a:
7 if n % prime == 0: #Checks whether any of the primes divide n. If n has a

prime divisor, then n is composite and the test returns "False",
otherwise "True" is returned

↪→

↪→

8 return false
9 return true

Since this primality test is not the one of biggest interest in this project, and since the test turns out
to be very slow for big integers, the proving of correctness of this implementation has been kept quite
simple:

1 [trial_division(n) for n in [3..10]]
2

3 Out: [True, False, True, False, True, False, False, False]

This shows that the test correctly recognizes the integers 3, 5, and 7 as prime numbers and the rest as
composite numbers.

5.2 Implementation of the probabilistic tests
The implementations of the Fermat test, Algorithm 3, and the Miller-Rabin test, Algorithm 4, are now
presented. As a part of the implementation, a couple of auxiliary functions have been made. First of
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all, in both the Fermat test and the Miller-Rabin test, some random numbers a ∈ Z/NZ\{0, 1, N − 1}
should be chosen. Therefore, a small function called RandomNumber(n) has been made:

1 import random
2

3 def RandomNumber(n):
4 a = random.randint(2,n-1) #Generates a random number between 2 and n-1
5 R = ZZ.quotient(n) #Defines the ring ZZ/nZZ
6 return R(a)

Remark. So-called random number generators written in computer software are actually not random,
since they are generated on a computer where everything is designed to be determined. However, a
sequence of ”random” numbers appear to be random when they are used for randomness tests, since
the tester of the code would not be able to know how the sequence of random numbers was generated[5,
p. 12]. In other situations, the way to generate random numbers as in this project would not be
”random enough”, but it is assumed that the random.randint()-function in Python is good enough for
this purpose.

The square-and-multiply algorithm, Algorithm 1 is used in both the Fermat test and the Miller Rabin
test as well, therefore this algorithm has been implemented as an auxiliary function as well:

1 def convertToBinary(x): #Convertes x into binary representation
2 y = bin(x)[2:]
3 return [int(k) for k in y]
4

5 def SquareAndMultiply(x,n): #Computes x^n
6 y = convertToBinary(n) #The convertToBinary function is called
7 w = 1
8 for dig in y:
9 w = w * w

10 if dig:
11 w = w * x
12 return w

The code sequence below shows how the implementation has been tested:

1 # Testing SquareAndMultiply
2 n = 13
3 R = ZZ.quotient(n) #Defines a quotient ring
4 x = R(5)
5 SquareAndMultiply(x,n-1) #Testing the SquareAndMultiply function
6

7 Out: 1
8

9 # Testing SquareAndMultiply
10 n = 15
11 R = ZZ.quotient(n) #Defines a quotient ring
12 x = R(5)
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13 SquareAndMultiply(x,n-1) #Testing the SquareAndMultiply function
14

15 Out: 10

In the first example above, the code computes 512 mod 13. Since 13 is prime, it is correct that the
output is 1. In the second example, the code computes 514 mod 15. One can check that this is indeed
congruent to 10 mod 15.

In the Miller-Rabin test, Algorithm 4, N − 1 = 2vm with v, m ∈ N, v ≥ 1, and m odd should be
computed. This is done in the following auxiliary function called v_and_m(n_minus1):

1 def v_and_m(n_minus1): #Computing n-1=2^v*m
2 v = 0
3 m = n_minus1
4 while (m%2 == 0):
5 m = m/2
6 v = v+1
7 return (v,m)

This function has been tested in the following way:

1 # Testing v_and_m
2 n = 69
3 print("{0}=2^({1})*{2}".format(n-1,step5(n-1)[0],step5(n-1)[1]))
4

5 Out: 68=2^(2)*17

The output is indeed correct.

The final implementations of the Fermat test and the Miller Rabin test are shown below:

1 def Fermat_Test(n,rounds): #Input: An odd integer n>=5 which should be tested
for primality, and the number of rounds the test should run (i.e. how many
random numbers "a" should be picked and tested)

↪→

↪→

2 if (n%2 == 0): #If an even n is given as input, then n is clearly not prime,
and the function returns "False"↪→

3 return False
4

5 for i in [1..rounds]:
6 a = RandomNumber(n) #Generates a random number in ZZ/nZZ
7 b = SquareAndMultiply(a,n-1) #Computes a^(n-1) mod n
8 if (b != 1): #If b != 1, then a is a Fermat witness for the compositeness of

n. The function returns "false"↪→

9 return False
10 return True #If none of the a's is a Fermat witness, then the function returns

"true"↪→
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1 def Miller_Rabin(n,rounds): #Input: An odd integer n>=3 which should be tested
for primality, and the number of rounds the test should run (i.e. how many
random number "a" should be picked and tested)

↪→

↪→

2 (v,m) = v_and_m(n-1) #Computes v and m such that n-1=2^v*m
3 for i in [1..rounds]:
4 a = RandomNumber(n) #Generates a random number in ZZ/nZZ
5 if (gcd(a,n) > 1):
6 return False
7 b = SquareAndMultiply(a,m) #Computes a^m mod n
8 if (b == 1):
9 return True

10 c = []
11 c.append(b)
12 for i in [1..v]:
13 b = b^2 % n
14 c.append(b)
15 i = i+1
16 if (b != 1): #This b corresponds to b_v=a^(2^v*m). Hence, if b != 1, then

Fermat's little theorem is not satisfied, and the compositeness of n is
proved

↪→

↪→

17 return False
18 count = 0
19 for i in c: #Finds the smallest b_i such that b_(i+1) = 1. If this b_i !=

n-1, then compositeness is proved↪→

20 if (i == 1):
21 j = c[count-1]
22 break
23 count += 1
24 if (j == n-1):
25 return True
26 else:
27 return False

The correctness of the implementations have been tested in the following way. The outputs given by
the tests are compared to the SageMath-function is_prime(). Furthermore, the SageMath-function
random_prime has been used in order to generate a big random prime:

1 c = [] #Generating some big numbers
2 for n in range(10,150,30):
3 c.append(2^n - 1)
4

5 print("The Fermat test: {0}".format([Fermat_Test(n,1000) == is_prime(n) for n in
c]))↪→

6 print("The Miller Rabin test: {0}".format([Miller_Rabin(n,1000) == is_prime(n)
for n in c]))↪→

7

8 Out: The Fermat test: [True, True, True, True, True]
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9 The Miller Rabin test: [True, True, True, True, True]

1 RandPrime = random_prime(10^13-1,False,10^12) #Generates a big random prime
2 print("The random prime is: {0}".format(RandPrime))
3 print("The Fermat test replies: {0}".format(Fermat_Test(RandPrime,1000)))
4 print("The Miller Rabin test replies: {0}".format(Miller_Rabin(RandPrime,1000)))
5

6 Out: The random prime is: 5707935571043
7 The Fermat test replies: True
8 The Miller Rabin test replies: True

5.3 Implementation of the AKS primality test
The implementation of the AKS primality test, Algorithm 5, is now presented. As for the other im-
plementations, some auxiliary functions have been made in order to make the implementation more
readable.

The first step in the AKS primality test, Algorithm 5, is to check whether n is a perfect power or not.
The implementation of this step has been handled by using p-adic Newton iteration as described in
Algorithm 9.22 and Theorem 9.28 in [4]. One important remark to this Algorithm is that it can only
check for nth powers where n is an odd number. This problem has been handled by also making a
modification of the Algorithm which uses 3-adic Newton iteration - this modification of the Algorithm
can check for the nth powers where n is an even number. A function called Perfect_Power_odd which
checks for odd powers has been implemented as well as a function Perfect_Power_even which logically
checks for even powers:

1 def p_adic_Newton(phi,p,l,g0, s0):
2 phi_der = phi.derivative()
3 r = ceil(log(l,2))
4 for i in range(1,r):
5 g1 = (g0-phi(g0)*s0) % p^(2^i)
6 g0 = g1
7 s1 = (2*s0-phi_der(g1)*s0^2) % p^(2^i)
8 s0 = s1
9 return (g0-phi(g0)*s0) % p^l

10

11 def Perfect_Power_odd(a,n): #Checks whether n is an odd perfect power
12 R = ZZ
13 Ry.<y> = R[] #Defines the ring
14 phi = y^n - a #Defines the phi-function
15 phi_der = phi.derivative() #Calculates the derivative of the phi-function
16 g0 = R(1) #Starting guess
17 k = ceil(log(a,2)/n)
18 s0 = inverse_mod(phi_der(g0),2) #Determines s0 as the inverse of the derivative

of the phi-function, evaluated in the starting guess↪→
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19 g = p_adic_Newton(phi,2,k,g0,s0) #Calls the p_adic_Newton function
20 return g^n == a #Returns "True" if a^n exists with an odd n, else it returns

"False"↪→

21

22 def Perfect_Power_even(a,n): #Checks whether a^n exists. Note that the inputs to
this function are: An integer a which corresponds to the n which is being
checked for primality in the AKS test (!), and an integer n which is here the
power being checked for

↪→

↪→

↪→

23 if (a % 3 == 0): #In case a is congruent to 0 modulo 3, a should be reduced such
that it is congruent to 1 or 2 modulo 3↪→

24 if (a % 3^(n) != 0):
25 return False
26 while (a % 3 == 0):
27 a = a/(3^(n))
28

29 a = ZZ(a) #Specifies that a is still an integer
30

31 if(a == 1): #If a is 1, then a^n is clearly a perfect power
32 return True
33

34 if (a % 3 == 2): #If a is congruent to 2 modulo 3, then a^n does not exist
35 return False
36

37 if (a % 3 == 1): #If a is congruent to 1 modulo 3, then a^n possibly exists
38 R = ZZ
39 Ry.<y> = R[] #Defines the ring
40

41 phi = y^n - a #Defines the phi-function
42 phi_der = phi.derivative() #Calculates the derivative of the phi-function
43 g00 = R(1) #First starting guess
44 g01 = R(2) #Second starting guess
45 k = ceil(log(a,3)/n)
46

47 s00 = inverse_mod(phi_der(g00),3) #Determines s0 as the inverse of the
derivative of the phi-function, evaluated in the first starting guess↪→

48 s01 = inverse_mod(phi_der(g01),3) #Determines s0 as the inverse of the
derivative of the phi-function, evaluated in the second starting guess↪→

49 g11 = p_adic_Newton(phi,3,k,g00,s00) #Calls the p_adic_Newton function
50 g12 = p_adic_Newton(phi,3,k,g01,s01) #Calls the p_adic_Newton function
51 return (g11^n == a) or (g12^n == a) #Returns "True" if a^n exists with an

even n, else it returns "False"↪→

The next auxiliary function is called Find_r(n), and it finds a value of r for which ordr(n) > (log n)2:

1 def Find_r(n): #Finds a value of r such that ord_r(n)>(log(n))^2
2 m = ceil(log(n,2)^2)
3 q = m #Starting from (log(n))^2, since r>(log(n))^2
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4 while True:
5 success = True
6 for j in range(1,m):
7 if (n^j)%q == 1:
8 success = False
9 break

10 if success:
11 return q
12 q += 1

The last auxiliary function which checks whether (x + a)n ≡ xn + a (mod n, xr − 1) for each integer a,
1 ≤ a ≤

√
r log n is called CheckEquations(n), and it is written as:

1 def CheckCongruences(n):
2 r = Find_r(n) #Finds a value of r such that ord_r(n)>(log(n))^2
3 l = floor(sqrt(r)*log(n,2)) #The congruence should be checked for each integer

a, 1 <= a <= sqrt(r)*log(n)↪→

4 R = ZZ.quotient(ZZ(n))
5 Rx.<x> = R[] #Defines the ring
6 Rquot = Rx.quotient(x^r-1)
7 X = Rquot.gen()
8 for a in [1..l]: #It is checked whether the congruence is satisfied or not
9 if (X+a)^n != X^n + a:

10 return False #Returns "False", if the congruences are not satisfied,
else it returns "True"↪→

11 return True

The final implementation of the AKS primality test is then written as:

1 def AKS(n): #The AKS primality test
2 for i in [3..20]:
3 if (i % 2 != 0):
4 if (Perfect_Power_odd(n,i) == True): #Checks the odd powers
5 return False
6 for i in [2,4,8,10,14,16,20]: #Unfortunately, the code fails on powers divisible

by 6 (which is why the 6th, 12th, and 18th power are not checked)↪→

7 if (Perfect_Power_even(n,i) == True): #Checks the even powers
8 return False
9 r = Find_r(n)

10 for a in [1..r]:
11 if (1 < gcd(a,n) < n): #Checks whether n has a prime power less than r
12 return False
13 if (CheckCongruences(n) != True): #Checks whether the congruences are satisfied

for each integer a, 1 <= a <= sqrt(r)*log(n)↪→

14 return False
15 return True #If n passed all tests, then n is prime and the function returns

"True"↪→
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The correctness of the implementation is shown by generating some big integers, using these integers
in the AKS function, and then comparing with the Sagemath-function is_prime:

1 c = [] #Generating some big numbers
2 for n in range(10,150,30):
3 c.append(2^n - 1)
4

5 print("The AKS test: {0}".format([AKS(n) == is_prime(n) for n in c]))
6

7 Out: The AKS test: [True, True, True, True, True]

1 RandPrime = random_prime(10^13-1,False,10^12) #Generates a big random prime
2 print("The random prime is: {0}".format(RandPrime))
3 print("The AKS test replies: {0}".format(AKS(RandPrime)))
4

5 Out: The random prime is: 3023372979947
6 The AKS test replies: True

5.4 Comparing the tests
Figure 51 shows a comparison of the four tests which have been implemented. Note that the blue graph
for the Fermat test is hidden behind the red Miller-Rabin test which show that both of them are really
fast. The two probabilistic tests are given the input rounds=20, and the following values of n has been
tested in each of the four implementations:

1 c = [1023,43251,3571385,357138533,35713853347,1099511627775]

Even though only 6 different values of n have been tested and plotted in this Figure, the Figure might
give a give about the robustness of the tests. It seems very clear that the Fermat Test, the Miller-Rabin
test, and the AKS test work much better for big values of n that trial division which was as expected.
However, when considering the choices of values of n being tested for, it might be the case that all 6
values are composite numbers. Take for example the AKS test, it is indeed faster for composite numbers
than for primes, since it only continues through all steps of the test when n is prime. Take for example
n = 66453917 which is prime:

1 timeit('AKS(66453917)',seconds=True)
2

3 Out: 13.161669588088989

Hence, if this value of n had been chosen as one of the values being tested in the comparison, then the
plot would have looked quite different from Figure 51.
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Figure 51: Comparison of trial division, the Fermat test, the Miller Rabin test, and the AKS test.
Note that the x-axis is the size of the numbers being tested for primality, and the y-axis
is the time in seconds it takes for the tests to determine whether the number is prime or
composite. Note that blue is the Fermat test, red is the Miller-Rabin test, green is the
AKS test, and black is trial division..

Since the time in seconds it takes for the two probabilistic tests to verify whether n is prime or not
seem to grow very slowly, Figure 52 shows a comparison of only these two tests. In this comparison,
both tests are given the input rounds=20 and the following values for n:

1 # Define scale of numbers, i.e. big N
2 c = []
3 for n in range(10,200,10):
4 c.append(2^n - 1)
5 print(c)
6

7 Out: [1023, 1048575, 1073741823, 1099511627775, 1125899906842623,
1152921504606846975, 1180591620717411303423, 1208925819614629174706175,
1237940039285380274899124223, 1267650600228229401496703205375,
1298074214633706907132624082305023, 1329227995784915872903807060280344575,
1361129467683753853853498429727072845823,
1393796574908163946345982392040522594123775,
1427247692705959881058285969449495136382746623,
1461501637330902918203684832716283019655932542975,
1496577676626844588240573268701473812127674924007423,
1532495540865888858358347027150309183618739122183602175,
1569275433846670190958947355801916604025588861116008628223]
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↪→

↪→

↪→

↪→

↪→

↪→

↪→
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Figure 52: Comparison of the Fermat test and the Miller-Rabin tests as these two tests seemed to
behave very similar in Figure 51. As for Figure 51, the x-axis is the size of the number
being tested for primality, while the y-axis is the time in seconds it takes for the tests to
determine whether the number is prime or composite. Note that blue is the Fermat test
and red is the Miller-Rabin test..

In the last comparison with only the two probabilistic tests, each value of n have been tested in the two
algorithms 10 times, and the final result is then the mean of the 10 times in seconds. This is another
factor indicating that Figure 52 shows a more precise result than Figure 51.



CHAPTER 6
Conclusion

Different primality tests have been considered and compared in this project. First of all, the implemen-
tations showed that it is indeed much easier and faster to determine whether a small integer is prime
or not compared to a very big integer.

The probabilistic Fermat test which have been considered performed very well in the tests of the im-
plementations. However, from a theoretical point of view this test is not at all sufficient in the sense
that it is a probabilistic test. Throughout the theoretical discussion as well as the implementation,
it can be concluded that the Fermat test indeed fits in the middle category described in Section 3.1.
A disadvantage of the Fermat test is that it does not recognize the so-called Carmichael numbers -
numbers for which all values of a satisfying an−1 ≡ 1 mod n and gcd(a, n) = 1 are Fermat liars - but
often incorrectly classifies these as primes.

Contrary to the Fermat test, the probabilistic Miller-Rabin test is able to recognize the Carmichael num-
bers as composite numbers. As such, this test is a great improvement of the Fermat test. When the
implementations were tested, these two tests seemed to behave very equally which follows the analytical
complexity analysis. The conclusion from the analysis was that both tests have running time O(M(k)k).

Even though the AKS primalty test, Theorem 4.9, at first sight looks very simple, the part with proving
that the test is actually correct turned out to be very complicated. However, in the end it was proved
that the criteria for the number n in Theorem 4.9 can indeed only hold when n is prime. The implemen-
tation showed that this test gets slower than the Fermat and the Miller-Rabin test when the size of n

is increased - again, as expected when comparing to the analytical complexity analysis. When studying
the complexity of the AKS test, first an output sensitive running time was given: Õ(r3/2(log n)3). The
logical question following from this running time is what the size of r is which have been discussed a
bit in the end of Chapter ??.

Throughout the project, the focus has been on the theoretical point of view which is why the proofs
of the primality tests have been discussed much more into details than the implementations of the pri-
mality tests. The implementations have been a proof of concept work, and indeed some improvements
of the implementations can be mentioned: One detail is in the Perfect_Power_even(n)-function as a
part of the implementation of the AKS test. The function can only test for nth powers where n is even
and n is not divisible by 6. However, it might be very rarely that the only detail distinguishing an inte-
ger n between being prime and being composite is the fact that n is a perfect 6th power of some number.

As already mentioned, when comparing the implementations with the analytical complexity analysis,
there seems to be an overall agreement. Clearly, the Fermat and the Miller-Rabin tests were the fastest,
but this detail is indeed due to the simplicity of these two probabilistic tests and comes at the cost of
uncertainty.
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